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EXECUTIVE SUMMARY 
 
 

During the past five to ten years, the Florida Department of Transportation (FDOT) and the 

Federal Highway Administration (FHWA) have moved away from allowable stress design 

(ASD) to probability based load and resistance factored design (LRFD) for deep foundations.  

Using their extensive databases of load test data in combination with insitu boring/laboratory 

data, the FDOT has selected LRFD Φ from a low of 0.45 (inclusion of end bearing) to a high of 

0.75 when done in conjunction with a field load test.  In general, the LRFD resistance factors for 

drilled shafts were developed for reliability values of 2.5 to 3.0 using expected pile/shaft 

coefficient of variation (CVR) ranging from 0.25 to 0.30.  For typical design (e.g., no end 

bearing), a designer would use Φ of 0.5 (non-redundant) or 0.6 (redundant) with one rock 

strength for all shafts on a given site. 

Unfortunately, typical rock strengths (unconfined and split tension) vary from site to site in 

Florida resulting in a range of coefficient of variation of rock strengths CVq.  In addition, since 

the axial shaft resistance is the sum, or average, of rock strength over its surface, its coefficient 

of variation of shaft resistance, i.e., CVR,  will be a function of the shaft’s dimension (i.e., length/ 

diameter (L/D)), and the rock’s strength variability CVq.  For instance, shorter shafts will result 

in less averaging and should result in larger shaft variability CVR, which should lead to smaller 

LRFD Φ.  In addition, Florida soil/rock data are correlated spatially.  When correlated rock/soil 

properties are averaged, e.g., shaft resistance, the resulting variability CVR is a function of the 

correlation length.  Finally, the number and locations of borings relative to the design shaft (e.g., 

in or out of footprint) contributes to shaft resistance uncertainty CVR. 

Using sound geostatistical theory, this work develops analytical methods for assessing 

CVR and the ensuing LRFD Φ for shaft design based on boring data.  The work considers 
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multiple types of boring scenarios:  inside or outside footprint; as well as number of borings; and 

location of borings relative to each other and with respect to the design shaft.  The report 

cumulates in the development of four quadrant charts, which the designer may employ for side 

resistance alone or side and tip resistance together, as well as layered systems.  The charts are 

entered with the known design load, the shaft diameter, the site or zone’s soil/rock variability 

CVq, and reliability of interest, from which the shaft length is assessed for single or multiple 

shafts (i.e., group) design. 

To improve predictions, the work also focuses on incorporating load testing in the design 

(i.e., LRFD Φ assessment) process.  In current design, the bias (λR) is a proportionality constant 

between the measured shaft resistance (e.g., skin and tip) and the borehole’s estimate of 

resistance, is predefined (e.g., American Association of State Highway Transportation Officials’ 

(AASHTO’s) λR = 1.06).  To incorporate both site specific borehole and load testing into the 

design process, the relationships between expected production shaft variance σ2
L and borehole 

predicted resistance variance σ*2
B is established, which includes a variance of a random residual 

σ2
ε, accounting for uncertainty in the shaft construction.   Note, the earlier work on borehole 

variability, i.e., σ*2
B applies.  Also, the design unit side friction is represented as −fdes = Φum*L, 

where Φu is defined as Φ from AASHTO’s First Order Second Moment (FOSM) equation with 

λR = 1, CVR includes the combined borehole and load test variability (σ*2
B and σ2

ε), and m*L is 

the mean predicted load shaft resistance from the borehole data.  Finally, the report gives 

multiple examples of design using data from existing FDOT sites incorporating just borehole, or 

combined borehole and load test data, for the proposed approach. 
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CHAPTER 1 
INTRODUCTION 

 

1.1  Background 

The support of structures (i.e., bridges, elevated roadways, buildings, etc.) in Florida has 

gone from small diameter piles (e.g., 14″) and drilled shafts (e.g., 48″) in the 1980s to very large 

diameter piles (e.g., 66″ cylinders) and drilled shafts (e.g., 108″) in the twenty-first century.  The 

larger piles/shafts have greatly diminished the footprint of pier caps, reducing cost and right-of-

way issues.  Unfortunately, the newer foundations have become both non-redundant as well as 

highly susceptible to soil/rock variability.  In the case of the latter, the use of fewer larger 

shafts/piles results in higher pile/shaft volume-to-surface-area ratios which will result in higher 

variance of axial pile/shaft resistances and even the possibility of collapse (e.g., Lee Roy Selmon 

Crosstown Expressway bridge, Tampa) due to the higher variance of soil/rock strength over the 

finite pile/shaft zones.  Compounding this problem is the fact that the insitu/laboratory testing is 

generally carried out at a fixed spacing (e.g., 100 ft to 500 ft), which may be hundreds of feet 

away from the final constructed foundations.  Recently in 2003 however, the Florida Department 

of Transportation (FDOT) has mandated the use of borings and laboratory testing of samples 

recovered in the footprint of non-redundant foundations as well as load test drilled shafts.   

During the past five to ten years, the FDOT as well as other state departments of transpor-

tation (DOTs) and the Federal Highway Administration (FHWA), have gradually moved away 

from allowable stress design (ASD) to load and resistance factored design (LRFD) for deep 

foundations.  Since LRFD models both the loads and the resistances acting on a shaft/pile as 

random variables, the resistance factors (Φ) are assessed based on the probability of failure (i.e., 

load is greater than resistance).  Using their extensive database of load tests with adjacent 



 

 - 2 -

borings/laboratory tests in Florida, the FDOT established LRFD resistance factors based on 

assumed reliability index.  For example, shown in Figure 1-1 are recommended LRFD resistance 

factors (Φ) for drilled shafts founded in Florida limestone for reliability index of 2.5 to 3.0 and 

an expected pile/shaft coefficient of variability (CVR[H1]) of 0.25 to 0.30.  In addition, all lime-

stone is generally treated uniformly and constantly over a site, i.e., it is not broken into zones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-1.  FDOT Structural Design Manual table of resistance factors for  
drilled shaft socket in limestone. 

 
 

Unfortunately, the strength characteristics of Florida’s soil/rock are highly variable.  For 

instance, in Figures 1-2 and 1-3 are the unconfined compressive strengths recorded at the  
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Figure 1-2.  Apalachicola Bridge site – qu frequency distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-3.  Gandy Bridge site – qu frequency distribution. 
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Apalachicola and Gandy bridges, respectively.  The coefficients of variation CVq (standard 

deviation/mean) vary from 1.2 to 1.7 for these sites, which should result in a different coefficient 

of variation of shaft resistance (CVR) and different LRFD Φ values (versus Figure 1-1) for each 

site.  In addition, the frequency distribution for the Gandy Bridge (Figure 1-3) has a bimodal 

distribution suggesting the existence of zones of different strength over the site. 

 Also, not addressed in the current practice, is the possibility of correlation of soil/rock 

strength data from point-to-point within the ground.  Shown in Figure 1-4 is the simulated rock 

strength for two drilled shafts located at the 17th Street Bridge in South Florida.  The red 

represents high strength values and blue is the lowest strength, in between are medium strengths 

which are yellow and green.  Evident from the figure, the rock strengths are correlated (i.e., 

transition from red to blue) over each shaft.  The latter is significant, since it will result in higher 

variation in pile/shaft resistances than if the strength was uncorrelated (i.e., red values next to 

blue, etc.).  Of interest is that there is a way of introducing soil/rock spatial correlation into 

LRFD Φ values for a site. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-4.  Variation of rock strength at the 17th Street Bridge. 
 

Finally, of major concern, is the influence of load testing on the recommended LRFD Φ 

values for design.  Recently in 2009, the American Association of State Highway Transportation 
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Officials (AASHTO) recommended a range of LRFD Φ values based on the number of load tests 

and the variability of soil/rock properties on the site (see Figure 1-5).  Unfortunately, use of 

higher LRFD Φ values with load testing (e.g., Lee Roy Selmon Crosstown Expressway bridge, 

Tampa), as suggested in Figure 1-5, has resulted in pier failure.  Of interest is the use of load 

testing to improve bias assessment (e.g., measured versus predicted capacity) along with 

borehole data to quantify spatial variability for development of LRFD Φ for an individual site. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1-5.  AASHTO LRFD Φ based on number of load tests and site variability. 
 
 

1.2  Objectives and Supporting Tasks 

The primary objective of this project is to account for spatial variability and load testing in 

assigning LRFD resistance factors (Φ) for drilled shafts socketed in Florida limestone at FDOT 

bridge sites.  The resistance factors should be a function of geometry, i.e., shaft diameter and 

embedment (length/diameter (L/D)), rock/soil strength variability (i.e., CVq) and spatial 

correlation length (a), at a site.  To assist in assessing typical spatial correlation lengths (a), the 

review of FDOT database as well as site visits should be carried out to evaluate expected ranges 

of values, since it has never been undertaken before.  In assessing the influence of load testing on 

LRFD Φ, the data from prior sites, which had soil/rock borings in the foot print of the load tests, 

are employed.  Finally, the work includes a number of case studies to identify how the proposed 
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design compares with current practice.  The research was accomplished through five tasks as 

outlined below. 

 
1.2.1 Task I – Collecting Shaft/Pile Capacities and Rock/Soil Variability 

The FDOT Geotechnical Internet Based Database maintained by the Florida Bridge 

Software Institute (BSI) has multiple bridge sites, which contain both insitu and laboratory (i.e., 

rock qu, qt, etc.) data and field load test data.  The insitu and laboratory data for each site were 

collected to establish the rock/soil strength variability (i.e., CVq) and study of spatial correlation 

length (a).  Existing project sites, which included detailed insitu/laboratory testing near the piers 

with load testing, were identified and a few were revisited to obtain borehole/laboratory data at 

closer horizontal spacing (i.e., 5 to 10 ft).  Sites evaluated were Fuller Warren and 17th Street 

Bridges, which covered the expected range of rock strength variability in Florida.  The study 

included identification of correlation both vertically and horizontally.  In the case of vertical 

correlation, boreholes spaced quite far apart might be used to identify zonal anisotropy, as well. 

Since the work must differentiate between spatial variability influences and the design 

approach bias, a site was needed which had load testing with boring and laboratory data within 

the footprint, as well as the pier footings.  The Jewfish Creek Bridge site was selected due to its 

two load tests and extensive boring/laboratory data within the footprint of load test, as well as at 

individual piers. 

 
1.2.2 Task II – Drilled Shaft Axial Coefficient of Variation (CVR) as a Function 

of Rock Point Statistics (Mean CVq) and Spatial Correlation Length (a) 

The focus of Task II is the upscaling of rock point characteristics (e.g., rock strength) 

recorded in a boring/laboratory test to the whole shaft.  Specifically, the point-to-point variability 

of rock strengths acting on the shaft’s surface result in similar shaft and rock mean capacities, 
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but reduced coefficient of variation (CVR) of shaft capacities versus the rock coefficient of 

variation (CVq).  The latter is due to the averaging of rock strength along the surface of the shaft.  

Also impacting the coefficient of variation of shaft resistance (CVR) is any rock strengths that are 

correlated from point-to-point, e.g., Figure 1-4.  For instance, having a correlation range larger 

than the embedded length of the shaft may result in a shaft located in all weak or strong rock that 

would result in large variations in shaft resistances.  However, shafts embedded in low 

correlation length rock will have both high and low rock strengths along their length, resulting in 

smaller variation in shaft resistance from shaft to shaft (i.e., different piers).  

Consequently, the focus of Task II is the development of expected coefficient of variation 

(CVR) of drilled shaft axial capacities as a function of shaft dimensions (i.e., length L and 

diameter D); the rock strength coefficient of variation (CVq); and its correlation length (a).  

Initial work assumed that the correlation length is known in both the vertical (av) and horizontal 

(ah) direction.  However, since the establishment of horizontal correlation length (ah) requires 

boreholes at close spacing (i.e., 5 to 10 ft), a conservative assumption of averaging the rock’s 

variance only in the vertical direction (i.e., line shaft approximation) is also considered.  Finally, 

in this task, LRFD Φ factors are developed as a function of shaft CVR and resistance bias (λR ) 

equal to one using the First Order Second Moment (FOSM) approach suggested by AASHTO. 

 
1.2.3 Task III – Development of LRFD Φ Values from Pre-Design Borehole Data  

The focus of Task III is the development of LRFD Φ values when limited borehole/labora-

tory information is available.  Specifically for the case of pre-design borehole/laboratory data 

(obtained during the Planning Design and Engineering, PD&E, study), the design piers may be 

quite far away from the borehole locations, and the number of boreholes/laboratory tests may be 

limited.  Consequently, the coefficient of variation of the shafts should include uncertainty 
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associated with the number of borings, as well as a conservative assumption on horizontal 

correlation.  In the case of the latter, the least reduction in CVR is to assume that the horizontal 

correlation is much larger than the radius of the shaft (i.e., no reduction due to averaging in the 

horizontal direction).  All of the boreholes in a region/zone are treated together to identify mean 

borehole strength and CVq. 

Also of concern with pre-design borehole data is the existence of rock variability (i.e., 

variance) which is greater for the zone/region than exhibited in any given borehole.  The latter is 

referred to as random areal trend (which is a type of zonal anisotropy), and it identifies 

variability that is not reduced by vertical averaging.   Such additional variability must be 

considered for any shaft design within the zone or region. 

 
1.2.4 Task IV – LRFD Φ Values for Borehole Data in the Footprint of 

Shaft/Piers 

The use of borehole/laboratory data in the footprint of the shaft or pier results in significant 

improvement in the LRFD Φ values for design.  Specifically, the increased number of borings 

allows the designer to use individual mean borehole strength for the pier shaft design, i.e., 

eliminating the uncertainty between mean borehole strength (i.e., average over a zone) and an 

individual shaft resistance.  However, the approach typically does not allow inference of the 

horizontal correlation length and some worst case scenario must be assumed to be conservative 

under all circumstances.  If the designer chooses to obtain a sufficient number of borings in the 

vicinity of the pier/shaft, the horizontal correlation may be established to improve on this worst 

case scenario.  The LRFD Φ values developed from borehole/laboratory data in the footprint of 

the pier/shaft are higher than the values developed for Task III due to the reduction in the 

uncertainty of shaft axial resistance.  
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1.2.5 Task V – LRFD Φ Values for Sites which Include Field Load Testing 

Borehole/laboratory strength data may not be a perfect estimate of drilled shaft resistance.  

Uncertainties associated with the design method, as well as construction issues (e.g., drilling 

fluids, casings, etc.), allow the development of site specific correction to the borehole/laboratory 

design approach from field load testing.  The use of borehole data within the footprint of the load 

tests allows a direct assessment of a design method bias, as well as prediction error variance.  In 

addition, if the load test and production shafts have similar diameters, the upscaling relationship 

between test/production shaft and borehole is exactly accounted for.  In addition, the prediction 

error variance established between the load test and borehole design approach may be used in 

combination with the uncertainties associated with borehole/laboratory data, i.e., the approach 

outlined in Task III (boreholes far away from design shafts) and Task IV (boreholes within their 

footprint of the design pier/shaft).  The combined uncertainties associated with borehole/labora-

tory data along with prediction error variance of the design approach are used to assess the total 

shaft axial resistance variance (CVR) and the associated LRFD Φ value for the designed shaft.  

Again, it is expected the use of boreholes within the footprint of the design shaft/pier will have 

the smallest uncertainty or variance (CVR) and result in the highest LRFD Φ values.  Guidelines 

for the number of load tests, as well as pairs of predicted versus measured shaft resistance values 

are given to ensure accurate bias and error variance assessment. 
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CHAPTER 2 
GEOSTATISTICAL PRINCIPLES 

 

2.1  Introduction 

While classical statistics deal with single (univariate statistics) or a finite number of 

possibly correlated random variables (multivariate statistics), geostatistics represent an extension 

to spatially distributed random functions, which are also called regionalized variables.  Random 

functions consist of an infinite number of random variables defined at every point in a one or 

higher dimensional space, which are correlated according to their relative spatial arrangement, 

and a spatial correlation structure transforming spatial closeness into statistical closeness, i.e., 

correlation.  As opposed to purely deterministic (i.e., no random component) functions, random 

functions are capable of describing spatially distributed parameters in probabilistic terms at every 

location, while preserving a certain degree of smoothness in space as typically observed in nature 

(parameter values at two close-by locations are more likely to be similar than at two distant 

locations).   

 Geostatistics originated during the 1950s in the mining industry and have ever since expe-

rienced strong theoretical and practical development.  Since the 1980s, applications have 

expanded to include many fields such as petroleum engineering, agriculture, meteorology, and 

hydrology, for example.  As an introductory text for practice oriented engineers, the book by 

Isaaks and Srivastava (1989) is recommended.  Among the large variety of literature available on 

the topic, Journel and Huijbregts (1978), Deutsch and Journel (1992), Goovaerts (1997), Kitanidis 

(1997) and Deutsch (2002) represent textbooks for further reading.  In the present study, geo-

statistics was applied to model the uncertain, yet in some way spatially continuous, distribution of 

rock/soil strength over a site, with the goal of estimating nominal resistances and uncertainties of 

drilled shafts to subsequently quantify LRFD resistance (Φ) factors incorporating spatial variabil-
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ity of local strength.  For this purpose, the remainder of this chapter is dedicated to introducing the 

most fundamental geostatistical principles, operations, and tools applied in this report.  

2.2  Random and Deterministic Components – Stationarity 

As stated above, random functions consist of an infinite number of random (and generally 

correlated) variables defined at every point within a spatial domain of interest.  To fully define a 

random function, hence, it is required to know the univariate distribution (probability density 

function or PDF) of the random variable at each location and the correlation between each pair of 

locations inside the domain.  This represents a large amount of information, which is simplified 

by the concept of stationarity assuming that univariate PDFs are the same throughout the domain, 

and spatial correlations are the same for equal separation distances, i.e., independent of the actual 

location.  Thus, stationarity somehow implies a concept of statistical homogeneity over a domain, 

which is also fundamental for practical implementation as it allows inference of a single PDF and 

spatial correlation structure describing a random function from a limited amount of data acquired 

at a site.  That is by grouping all observations (although they conceptually correspond to different 

random variables at different locations), the PDF of the random function may be determined (this 

is also known as the principle of ergodicity).  In the same way, by grouping all observations 

separated by (approximately) equal distances, which the spatial correlation structure may be 

inferred as a function of spatial separation.  This process is discussed in further detail below. 

Most common deviations from stationarity occur due to deterministic trend components or 

discontinuities (e.g., layering), i.e., locally varying mean values.  In general, a random function 

RF(x) where x represents a spatial coordinate, may be written as the sum of a deterministic 

component D(x) and a random component R(x) fluctuating about D(x). 

)()()( xRxDxRF +=  (2-1) 
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Figure 2-1 graphically illustrates the meaning of Equation 2-1 for (a) a linear deterministic 

trend component and (b) a discontinuous trend.  In both cases, all geostatistical operations are 

performed on the random component R, i.e., after subtracting D from observed values of RF. 

Component D is added back into final results only after geostatistical analysis has been 

concluded.  In the latter example, RF may alternatively be divided into two separate sub-

domains, A and B, which are both stationary by themselves, however, not together.  The decision 

about stationarity or not must be carefully considered and is often scale dependent, i.e., what 

appears to be a deterministic trend at a local scale may become part of a random fluctuation 

component at a larger scale.  Inspection of location maps or depth profiles with data values is 

most helpful in identify overall trends or discontinuities.  Data histograms (see next section) may 

also indicate the presence of more than a single homogeneous sub-domain if more than one 

 
Figure 2-1.  Deterministic (D) and random (R) components of non-stationary random 

functions (RF):  (a) Linear deterministic trend; and (b) Discontinuous  
deterministic trend (two stationary sub-domains A and B). 
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mode (peak) is identified.  There are, however, no hard rules available for the decision about 

stationarity and some practical guidelines are given in the course of case studies below. 

2.3  Histogram, Scatterplot, and Variogram 

As stated above, an intermediate goal is to describe the spatially variable distribution of 

rock/soil strength at a given site as a random function (defined by PDF and spatial correlation 

structure) based on local strength data (e.g., core samples, SPT, CPT, etc.) collected at that site.  

Data are hereby assumed to be stationary, i.e., deterministic trend components have previously 

been subtracted or division into sub-domains (e.g., layers, zones, etc.) has been performed.  The 

PDF expresses the probability (frequency) of occurrence of a data value at a site and is inferred 

through a data histogram.  Hereby, the data range between minimum and maximum data values 

is divided into a number of equal intervals in which the numbers of occurrence (frequency) of 

data values are counted (i.e., histogram).  For each data interval on the x-axis, respective fre-

quencies are plotted as bars in y-direction to obtain the histogram.  Different PDFs, e.g., normal, 

log-normal, etc., may be tried out to best fit the data histogram (Figure 2-2).  Location maps, 

depth profiles, and histograms are easily generated through basic Microsoft Excel functions. 

Important parameters of the data histogram are the mean (m) and variance (σ2) defined by 
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where n is the number of qi data collected.  From this, the coefficient of variation is obtained as 

m
CV σ

=  (2-4) 

where σ (square root of variance) is called the standard deviation.  Large values of CV indicate a 
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large relative spread of data values about the mean.  Note that no strict rules exist for the choice 

of number of bin classes in a histogram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2.  Example of local strength q histogram (bars) and log-normal PDF fit 
(continuous line). 

 
 

It is good practice to experiment with several numbers of bin classes to get an impression 

of the sensitivity of the histogram shape.  Among many different approximate formulas, Scott’s 

rule recommends a number of bin intervals equal to 3.49σ(n)−1/ 3, which can be used as a starting 

point.  The probability distribution function (i.e., PDF) is obtained from the histogram by 

dividing the number of occurrences in each bin by the total number of occurrences recorded to 

give the probability of each event with the summation equal to one (i.e., area under PDF).  The 

cumulative distribution function (CDF) is the summation of probabilities of each bin up to the 

current bin and is plotted on the y-axis. 

In order to infer the spatial correlation structure from available data at a site, it is required 

to determine the correlations between data pairs that are separated by different distances.  As 
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opposed to histogram inference, where data are grouped into intervals of data values, e.g., 

strength, data are now grouped into intervals of data separation distance (referred to as lag 

distance).  For example, all data pairs are selected, which are separated between 3 and 4 meters 

from each other and plotted in a scatterplot, i.e., in a chart where one data value qi of the pair is 

on the x-axis and the other data value qj (located from qi value by lag distance h) of the pair on 

the y-axis.  Figure 2-3 (a through c) depicts examples of scatterplots for increasing separation 

(lag) distances and decreasing degree of correlation, i.e., larger spread of data points about the 

45° line.  Perfect correlation would be indicated by all data points falling onto the 45° line, which 

is the case for qi = qj, i.e., when the spatial separation distance is zero (data points are paired with 

themselves). 

 

Figure 2-3.  Data scatterplots for different separation (lag) distances of data pairs (qi, qj): 
Sequence of (a), (b), and (c) represents increasing separation distance and decreasing 

correlation.  Dashed line is 45° and represents perfect correlation  
(qi – qj or zero separation distance). 

 
 

A fundamental parameter contained in the scatterplots is the covariance Cov(qi,qj) between 

data values qi and qj, which are separated by a certain lag distance h (or an interval around h),   

( )( )∑ −−
−

=
hn

ji
h

ji mqmq
n

qqCov
1

1),(  (2-5) 

qi 

qj 

qi 

qj qj 

(c) (b) (a) 

qi 
45° 



 

 - 16 -

where nh is the number of data pairs in the interval (also called lag class) around separation 

distance h.  For zero lag distances, qi = qj and Equation 2-5 reduces to the variance of Equation 

2-3.  The covariance is directly linked to the dimensionless correlation coefficient r by 

 2

( , )i jCov q q
r =

σ
 (2-6) 

Note that Equations 2-5 and 2-6 are based on the stationarity assumption, which implies 

that the means and variances of qi and qj are the same and equal to m and σ2.  By evaluating 

Equations 2-5 and 2-6 for a series of lag distance intervals (e.g., 0 – 2 m, 2 – 4 m, 4 – 6 m, etc.), 

points of the spatial covariance function C(h), and the spatial correlation function r(h), respec-

tively, are obtained.  Another measure of spread of the data points in Figure 2-3 about the 45° 

line as a function of lag distance h is the semi-variogram (or frequently abbreviated to 

variogram) γ(h) defined as 

( )∑ −=
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h

qq
n

h 2

2
1)(γ  (2-7) 

which is related to the spatial covariance function C(h) by 

)()( 2 hCh −= σγ  (2-8) 

Figure 2-4 gives graphical examples of C(h), r(h), and γ(h), where it is illustrated that 

spatial correlation, i.e., C(h) and r(h) in Figure 2-4 (a) and (b) typically reaches zero after a 

distance denominated as range or correlation length.  In turn, h = a, γ(h) in Figure 2-4(c) reaches 

its so-called sill (dotted line) equal to the variance σ2 according to Equation 2-8.  Similar to 

fitting a PDF model to a data histogram (Figure 2-2), Figure 2-4 further shows how one of a 

series of theoretical variogram models (e.g., exponential or spherical model; dashed lines) must 

be fitted to the experimental variogram points (dots) for subsequent use in geostatistical analysis.  

Care must be taken that each experimental variogram point is based on a sufficient amount of 
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data pairs to be representative.  No strict guidelines are available, but by widening the lag 

distance intervals, if necessary (e.g., 0 – 4 m instead of 0 – 2 m), more than 30 data pairs should 

be used in each variogram point.  It is good practice to inspect experimental variograms of 

different lag separation intervals to evaluate the sensitivity of the outcome to this choice.  Many 

commercially available or free-to-download programs exist for variogram analysis, which 

however, is also emendable to implementation in Microsoft Excel.   

 

Figure 2-4.  Graphical examples:  (a) Spatial covariance function C(h); (b) Spatial 
correlation function r(h); and (c) Variogram γ(h).  Dots represent experimental 

values derived from site data and Equations 2-5, 2-6 and 2-7, respectively,  
while dashed lines represent variogram model fits of range a. 

 
 

Different independent random functions can be added to better describe a variable of 

interest.  Just as the variances for each random function may be added, the individual variograms 

may be added to obtain the total variogram representing the sum of the random functions. Vario-

grams composed of more than one basic structure are called nested variograms and examples are 

given in Figure 2-5.  Most important is the case of Figure 2-5(c), where the range a1 of one 

variogram component is zero (i.e., smaller than the shortest data separation distance in practice). 

This variogram component is called nugget or nugget effect and it represents small scale 
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variability and measurement errors, for example.  It causes the composite variogram (continuous 

line) to intersect the y-axis at the nugget variance C0. 

 

Figure 2-5.  Examples of nested (composite) variograms:  (a) Equal ranges a1 = a2 = a; 
(b) a1 < a2; and (c) a1 = 0 representing a nugget effect of variance C0. 

 
 

 In more than one dimension, variograms may not be a function of separation distance h 

only, but also the direction in which the separation vector points.  For example, a process studied 

over a certain portion of the earth’s surface may possess a larger spatial continuity (i.e., correla-

tion length) in the north-south direction than in the east-west direction.  Similarly, it is very 

common in geological settings to observe a different correlation length in both horizontal 

directions than in the vertical direction (e.g., short scale depositional variability in vertical 

direction with larger spatial continuity in horizontal directions).  This represents an example of a 

phenomenon, which is called anisotropy of the variogram and which may be investigated by not 

only grouping data pairs into separation distance intervals only (as in Figure 2-4), but also by 

grouping data pairs according to their direction of alignment.  Thus, experimental variogram 

points are obtained for different spatial directions and may be compared to see whether 

anisotropy is present or not.  By differentiating horizontal and vertical direction, Figure 2-6 

represents different types of anisotropy that may occur.  The case of Figure 2-6(a) is called 
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geometric anisotropy and corresponds to the situation discussed above, where horizontal and 

vertical ranges are different whereas both horizontal and vertical variogram reach the same sill, 

i.e., contain the same amount of variability.  Figure 2-6(b) gives an example of a so-called zonal 

anisotropy, where horizontal and vertical ranges are the same, but the variances (sills) σ2
h and σ2

v 

are different.  This means that more spatial variability is contained in one direction and reflects 

random layering if σ2
h < σ2

v or random areal trends in the horizontal plane if σ2
h > σ2

v.  To illus-

trate an extreme case of zonal anisotropy in the case of random layering, would be if σ2
h = 0 

corresponding to a vertical sequence of layers of random and possibly vertically correlated 

strengths, which are, however, constant in the horizontal direction, i.e., within layers.  Finally, 

Figure 2-6(c) shows that geometric and zonal anisotropies may occur simultaneously to different 

individual extents. 

 

 

Figure 2-6.  Examples of anisotropic variograms:  (a) Geometric anisotropy with ah > av;  
(b) Zonal anisotropy with σ2

h < σ2
v; and (c) Mix of geometric and zonal  

anisotropies with ah > av and σ2
h < σ2

v. 
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2.4  Upscaling, Kriging, and Stochastic Simulation 

In all of the above, the issue of scale is of fundamental importance.  That is, histograms, 

scatterplots, and variograms are only valid for a certain support size of the data collected (i.e., 

sample size).  All data used should be of the same support size (e.g., inches, centimeter scale) 

and may be treated as point values if observed correlation lengths are at a larger (e.g., ft or 

meter) scale.  It is well known in statistics that averaging of random variables has a variance 

reducing effect on the outcome.  Of interest to the present work is the spatial averaging of local 

strength values over the cylindrical outside surface of a drilled shaft in order to obtain an average 

design strength value for the whole shaft.  The variance reduction principle may hereby be 

thought of as the compensating effect of large and small local strength values on the shaft 

surface, which leads to some intermediate strength value when averaged.  Thus, it is less likely 

for mean strengths over a whole shaft to take as extreme values as local or point-to-point strength 

does.  The branch of geostatistics dealing with this kind of phenomenon is called change of 

support or upscaling (if change of support is from small to large).  For n independent (i.e., 

uncorrelated) random variables of variance σ2, it is well known from classical statistics that the 

variance σ2
m of the mean is 

nm

2
2 σσ =  (2-9) 

This relationship may be generalized to correlated random variables and spatially 

correlated random functions where averaging is over certain spatial domains (e.g., shaft surface). 

For this purpose, a dimensionless variance reduction factor α is introduced such that 

22 ασσ =m  (2-10) 
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where A is a spatial domain (e.g., line, area or volume) over which averaging occurs due to r(1 ≤ 

r ≤ 0); x1 and x2 are coordinates.  Despite the complex aspect of Equation 2-11, its intuitive inter-

pretation is straightforward as the mean value of the correlation function r(h) over all possible 

combinations of location pairs within A.  If A is reduced to a finite number of n uncorrelated 

locations, Equation 2-10 becomes equal to Equation 2-9 with α = 1/n.  As r(h), decreases with h, 

and becomes zero for distances beyond the variogram range (Figure 2-4(b)), Equation 2-11 

illustrates that variance reduction becomes stronger (i.e., α smaller) as the spatial averaging 

domain A grows.  If A is reduced to a single point (no upscaling), then α = 1 and σ2
m = σ2. 

Upscaling is the geostatistical operation which determines the variance (uncertainty) of the 

total shaft resistance from well known PDF and variogram of local strength, while the expected 

or mean shaft resistance remains unaffected and equal to the mean local strength at a site (i.e., 

upscaling does not affect the mean of a distribution).  No specific location is hereby associated 

with a shaft, i.e., the upscaled variance corresponds to the variability of the resistances of many 

shafts arbitrarily located over a site or zone defined by the same variogram.  In practice, local 

strength data are never perfectly well known due to limited sampling and explicit shaft locations 

must be defined during the design process.  While the former represents an additional component 

of uncertainty, the latter may lead to a reduction in uncertainly of shaft resistance, if local 

strength data are available in the vicinity (within the correlation length) of a shaft.  Spatial 

correlation between local strength data and the shaft surface then allows for an improved 

estimate of shaft resistance and variance.  The geostatistical tool provided for this task is called 

ordinary kriging or best linear unbiased estimation (BLUE).  Denoting all n local strength data at 

a site with qi , kriging estimates the unknown average local strength (average unit side friction) f 

over a lateral shaft surface A as the weighted average of all qi , 
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∑
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n
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iiqA

Rf
1

λ  (2-12) 

where R is the shaft resistance and λi represents the weights associated with each data value that 

add up to one (
1

1
n

i
i=

λ =∑ ).  The error variance σf
2 associated with this estimate is called 

ordinary kriging variance and given by 
 

),(2222 qmCqmf −+= σσσ  (2-13) 

σm
2 hereby is the upscaled shaft resistance variance from Equation 2-10 and σq

2 is the variance of 

the estimator in Equation 2-12, 

∑∑
= =

−=
n

i

n

j
jijiq xxC

1 1

2 )(λλσ  (2-14) 

which is simply the mean weighted covariance between all possible combinations of data pairs. 

The last term in Equation 2-13 represents the covariance between the shaft resistance to be 

estimated and the estimator of Equation 2-12 and is equal to the mean weighted covariance 

between all combinations of a data point and a point on the shaft surface A. 

dxxxC
A

qmC
n

i A
ii∑∫

=

−=
1

)(1),( λ  (2-15) 

Ordinary kriging uses Equation 2-13 to find the values of the weights λi required in Equa-

tion 2-12 by minimizing the error variance σf
2.  Error variance σf

2 and, hence λi, depend on both 

the data locations and shaft location through the spatial covariance function in Equations 2-14 

and 2-15.  Data closer to the shaft receive larger weights such that C(m,q) in Equation 2-15 

increases and σf
2 decreases.  The ordinary kriging estimator is also known to account for data 

redundancy, i.e., correlated data close to each other (data clusters) are assigned smaller weights 

than isolated data points.  In taking A in Equations 2-11 and 2-15 very large (e.g., whole site 

rather than shaft surface), Equation 2-12 becomes an estimator of the mean strength at a site and 



 

 - 23 -

σf
2 = σq

2 as Equations 2-11 and 2-15 approach zero.  If, in addition, all available data are 

uncorrelated, then Equation 2-12 reduces to Equation 2-2 (i.e., λi = 1/n) and σf
2 becomes equal to 

σm
2 from Equation 2-9.  For more than one spatially distributed parameter involved in a problem, 

the above kriging approach may be generalized to co-kriging of several random functions.  In 

addition to spatial correlation of each random function (auto-correlation), it is also hereby 

accounting for spatial correlation between different random functions (cross-correlation). 

Kriging provides an estimate of average unit side friction over a shaft surface and a respec-

tive measure of uncertainty in terms of a variance.  In order to translate this information into a 

probability of failure for a given load, it is required to make assumptions about the distribution of 

the kriging error around the kriging estimate (e.g., normal, log-normal).  Moreover, if the shaft 

failure mechanism is not a simple linear function (i.e., spatial average) of local strength values 

(e.g., function of modulus or stress), as in the case of ultimate limit state based on side friction 

only (no end bearing), then upscaling or kriging may no longer provide a direct estimate of shaft 

resistance and uncertainty.  In those cases, failure is typically simulated by numerical finite 

difference/element models (Figure 2-7), which require the spatial distribution of local strength 

values at each grid point of the model as input.  As the exact spatial distribution of local strength 

q at a site is never known, the geostatistical method called stochastic simulation is used to 

generate a number of q fields (called realizations), which honor PDF and variogram of q at that 

site.  Each realization is a possible scenario for the real spatial distribution of q based on the 

geostatistical site characteristics and is equally likely to occur in reality (examples of two-

dimensional realizations of q are given in Figure 2-8).  With this, shaft failure may be simulated 

through numerical models for every realization of q resulting in a distribution (histogram) of 

shaft resistance for a specified displacement of limit state.  
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Figure 2-7.  Example of three-dimensional grid for finite element model to  
simulate shaft resistance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-8.  Examples of two 2-dimensional unconditional realizations of local strength 
generated by sequential Gaussian simulation (SGS) of 17th Street Bridge data. 
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In contrast to kriging, no assumptions are required about the shape of the shaft resistance 

distribution, but a very large number of realizations and numerical model runs may be necessary 

to obtain reliable information in the tails of the shaft resistance distribution, which is of actual 

interest.  Realizations that are generated by using stochastic simulations, which possess a given 

PDF and variogram, are called unconditional, while realizations that also honor (i.e., reproduce) 

local data values are called conditional.  From a large number of realizations, a histogram of 

simulated q values may be constructed for each location.  The means and variances of those 

histograms coincide with those predicted by respective kriging.  Many algorithms and programs 

exist to perform stochastic simulation.  Most common in geosciences are methods based on 

Gaussian (normal) fields (e.g., sequential Gaussian simulation (SGS), LU-simulation, etc.), 

which are generated first to honor a given variogram and, subsequently, transformed to honor a 

given PDF. 

2.5  Case Studies 

Appendix A contains local strength data from core sample analysis with respective spatial 

coordinates for two bridge sites (17th Street and Fuller Warren).  This section uses these data to 

discuss the problem of stationarity as well as to give examples of location maps, depth profiles 

with subsequent histogram, and variogram inference.  This is what is called basic data analysis or 

structural analysis (when including the variogram) and is a fundamental task at the beginning of 

every geostatistical analysis.  The principles of variance reduction, upscaling, and kriging will be 

further developed and illustrated in the next chapter. 

 
2.5.1 17th Street Bridge 

Figure 2-9 represents a location map and depth profiles from six borings (136 local 

strength values) near Pier 10, where x and y are coordinates in the horizontal direction and z is 
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an elevation above some arbitrary datum (all in feet).  The location map also contains values of 

means and standard deviations (in parentheses) of local strength values q per boring (both in tsf). 

This representation is useful for deciding whether a discontinuity or a deterministic trend is 

present in the horizontal direction.  A review of the mean values reveals no gradual (smooth) 

tendency to increase or decrease in any directions of the horizontal plane.  Moreover, the 

maximum difference in borehole mean values is 20.2 – 11.8 = 8.4 tsf, which is very similar to the 

average standard deviation per boring, reflecting the fact that all depth profiles in Figure 2-9(b) 

overlap each other to some extent.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
                                       (a)                                                                                      (b) 
    
Figure 2-9.  Site near Pier 10:  (a) Location map with means and standard deviations (both 

in tsf) per boring (dots) in parentheses; and (b) Depth profiles of six borings. 
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This overlap further manifests in the histograms of Figure 2-10, which possess a single 

mode (peak) and may be approximated by a log-normal PDF as indicated by the continuous line.  

Figures 2-10(a) and 2-10(b) are based on the same data but different choices of data intervals for 

grouping into bin classes (number of vertical bars in the histogram).  They illustrate that the 

overall aspect of the data distribution is relatively robust to this choice of bin class number (nine 

bins are shown in 2-10(a); and six are shown in 2-10(b)).  Note also that the log-normal PDF fit 

does not depend on the number of bin classes in the histogram, but solely on the mean and 

variance of the data indicated in Figure 2-10(a).  Non-overlapping depth profiles (either between 

different borings or within a single boring with layering) would lead to a multi-modal (more than 

a single peak) histogram and strongly suggest considering division into statistically homogeneous  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

Figure 2-10.  Data histograms with fundamental parameters and log-normal fit of PDF:   
(a) Nine bin classes (data intervals or bars) used; and (b) Six bin classes used. 
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sub-domains.  This division is straightforward if each histogram mode may be attributed to data 

from distinct regions or layers of a site, and the inclusion of geological information from core 

samples is fundamental (e.g., changing rock type vertically or horizontally).  However, if data 

from different modes are intermingled over the whole site, such homogeneous sub-domains may 

not exist (at the scale of the study), and the discrepancy in local strength values between different 

borings or different layers will manifest as a zonal anisotropy in the variogram (Figure 2-6). 

Based on Figures 2-9 and 2-10, the present data are treated as statistically homogeneous 

(stationary).  

Figure 2-11 shows different outcomes of the variogram analysis, where sub-figures (a) and 

(b) are based on a 1-foot lag interval and sub-figures (c) and (d) on a 2-foot lag interval.  Not 

necessarily all lag classes contain data, but the overall picture of Figure 2-11 indicates a vertical 

range between 4 and 5 feet (dashed lines) and a horizontal range between 10 and 12 feet 

(continuous lines).  The short range behavior of the experimental variogram points does not 

clearly indicate whether a nugget effect is present as assumed in the model fits of Figure 2-11(b) 

and 2-11(d) or not as in 2-11(a) and 2-11(c).  For spatial averaging, however, it will be seen that 

it is conservative to assume zero nugget variance such that the models 2-11(a) and 2-11(c) would 

be considered in this case.  Figure 2-11 nicely illustrates the situation of a geometric anisotropy, 

where both horizontal and vertical variograms reach the same sill equal to the data variance (or 

one, if the variogram is normalized to the data variance as in the present case, i.e., all variogram 

values are divided by the data variance). 
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Figure 2-11.  Vertical (dashed) and horizontal (continuous) variograms normalized to unit 
sill.  Dots are experimental variogram point from data and smooth lines are  

variogram model fits:  (a) and (b) use constant 1-foot lag interval;  
while (c) and (d) use constant 2-foot lag interval. 

 
 
2.5.2  Fuller Warren Bridge 

The location map and depth profiles of the 57 core sample data collected in three borings 

near the Load Test Shaft 4 (west side of bridge) are depicted in Figure 2-12.  The depth profiles 

immediately reveal a strong discontinuity in measured strength values at an elevation of approxi-

mately 16 ft, which is consistent for all three borings.  Visual core sample inspection may 

underline this by observing a distinct change in rock/soil type and quality.  As a consequence, the 

(a) (b) 

(c) (d) 
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data set is divided into two sub-domains, i.e., two horizontal layers, a top and a bottom one.  The 

numbers in parentheses next to each boring in Figure 2-12(a) represent means and standard 

deviations for all data in a boring (top line), for data in the top layer only (center line) and for 

data in the bottom layer only (bottom line).  In agreement with the depth profiles, no significant 

trend or discontinuity may be observed in the horizontal direction.  However, the differences in 

means and standard deviations between the two layers in each boring confirm the previous 

division of the site into the two layers.  It may also be observed that the ratio of means between 

the layers is approximately equal to the ratio of respective standard deviation (i.e., approximately 

constant CV).  This is typical for log-normal variables and is known as proportional effect in 

geostatistics reflecting the fact that variability increases with strength, as may be visually 

confirmed in Figure 2-12(b).  

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-12.  Core sample data from three borings:  (a) Location map with means and 
standard deviations (both in tsf) per boring (dots) in parentheses, Top line –  

All data; Center line – Top layer; and Bottom line – Bottom layer; and  
(b) Depth profiles of all three borings indicating top and bottom layer. 
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Figure 2-13 gives the data histograms for (a) all data, (b) the bottom layer only, and (c) the 

top layer only.  From the combined histogram in Figure 2-13(a), the presence of two distinct 

layers is not obvious as the data values of both layers slightly overlap and, most importantly, as 

the number of data in the top layer is smaller than that in the bottom layer, thus the bottom layer 

dominates the histogram and the second histogram peak of the top layer is not pronounced. 

When inspecting the histograms of the bottom and top layers in Figures 2-13(b) and 2-13(c) 

separately, however, the different strength distributions become evident.  Fundamentally related  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 

Figure 2-13.  Data histograms with fundamental parameters and log-normal fits of PDF:  
(a) Compound histogram of all data; (b) Bottom layer only; and (c) Top layer only. 
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to the division into statistically homogeneous sub-domains is the principle of finding spatial 

regions within which variability (i.e., variance) is a minimum, while differences (i.e., variance) 

between data means of different spatial regions is a maximum.  By taking the coefficient of 

variation CVq given in Figure 2-13 as a measure of variability, it is seen that division into layers 

achieved a reduction of CVq from 1.07 to approximately 0.5.  The fact that CVq in both layers is 

approximately equal is, again, an indicator of the proportional effect.  Figure 2-13 also illustrates 

how the choice of the number of histogram bars depends on the number of data available. 

In addition to layering, Figure 2-12(b) suggests the presence of linear deterministic trends 

in each layer.  Figure 2-14(a) shows linear regression fits and equations to the data of each layer, 

where it is important to note that the strength q is the dependent variable (y-axis in regression) 

for which the regression over the elevation z (x-axis in regression model) is performed (i.e., the 

opposite as depicted in Figure 2-14).  Figure 2-14(b) shows the so-called regression residuals, 

which are the actual data values minus the regression values at their respective elevations (i.e., 

horizontal distances between data points and regression lines in Figure 2-14(a).  The residuals 

are seen to possess a mean of zero and different variances of 0.45 and 18.4 tsf2 for the bottom 

and top layer, respectively.  The identification and subtraction of these linear trends represent an 

additional reduction of variability from standard deviations of 0.9 and 5.3 tsf for bottom and top 

layers, respectively (Figure 2-13(b) and 2-13(c)), to 0.67 and 4.3 tsf (i.e., CVq = 0.37 and 0.46 

when used with mean q for each layer).  The latter standard deviations correspond to those of the 

residuals depicted in Figure 2-14(b). 

Based on the residuals (Figure 2-14(b)) variogram analyses are performed with results 

shown in Figures 2-15(a) and 2-15(b) using dashed lines for the vertical and continuous lines for 

the horizontal direction.  Evident from this and the location map of Figure 2-12(a) is that the 
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Figure 2-14.  Depth profiles:  (a) With linear regression lines fitted to data from all borings 

in each layer; and (b) Residuals (= data values – regression values). 
 
 
horizontal spacing between the borings is very large and that experimental variogram points may 

only be found for three distinct lag distances (namely the distances between the borings).  With 

this, it may not be expected to be able to infer a reliable horizontal variogram.  In the vertical 

direction, the amount of data and resolution are better, especially in the bottom layer; however, 

no spatial correlation is observed, i.e., no consistent decrease in experimental variogram points 

towards the origin.  In the top layer, fewer data are available and the inference of a reliable 

vertical variogram is additionally limited by a small number of data pairs contributing to each 

experimental variogram point.  Figure 2-15(c) and 2-15(d) are for comparison and depict 

experimental variograms for the raw data (i.e., before subtracting trends; Figure 2-12(b)) for the 

bottom and top layer, respectively.  As the trends are taken out only in the vertical direction, no 

significant changes occur in the shape of the horizontal variograms between Figure 2-15(a) and 

2.15(b) versus 2-15(c) and 2-15(d) (except for different scaling).  In the vertical direction, results 
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Figure 2-15.  Experimental variograms in horizontal (continuous) and vertical (dashed) 
directions normalized to unit sill:   (a) Detrended data (Figure 2-14(b)) – Bottom layer;  

(b) Detrended data (Figure 2-14(b)) – Top layer; (c) Raw data (Figure 2-12(b)) – Bottom 
layer; and (d) Raw data (Figure 2-12(b)) – Top layer. 

 
 
are quite different thus nicely reflecting the effect of a trend.  The vertical variogram points in 

Figure 2-15(c) and 2-15(d) indicate a more or less linear variogram, which does not level off at 

the sill value of one.  Linear variograms belong to the category of non-stationary variogram types 

(c) (d) 

(a) (b) 



 

 - 35 -

and their identification may motivate a search for deterministic trends in the data.  Obviously, in 

the presence of a monotonous trend function, the variogram cannot become horizontal as the 

expected difference in data values (Equation 2-7) keeps increasing with distance.  An important 

note in connection with deterministic trend functions is that they are never to be used for 

extrapolation beyond the spatial domain of where data are available for their inference. 
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CHAPTER 3 
ASSESSMENT OF SHAFT RESISTANCE (UPSCALING) AND LRFD Φ 

 FROM EXHAUSTIVE BOREHOLE/LABORATORY DATA 
 

3.1  Description of the Approach 

Based on the geostatistical fundamentals of Chapter 2, this chapter investigates the 

variability of shaft resistance for known site conditions (e.g., from exhaustive core sampling), 

but yet unknown (i.e., in some sense arbitrary) shaft location.  Section 3.2 develops a variance 

reduction factor for side friction and a formula to combine it with uncertainty in end bearing, 

which is developed in Section 3.3.  Section 3.4 translates results into terms of LRFD Φ values 

with an approach for practical implementation in Section 3.5.  Section 3.6 finally demonstrates 

the practical application by continuation of the case studies from Chapter 2. 

Shaft resistance R, due to side friction for axial loads at ultimate limit state, is assessed 

from the local ultimate unit side friction q of the rock (or soil) matrix times the unit surface area 

dA summed (i.e., integrated) over the lateral shaft surface.  While the lateral shaft surface area As 

is typically known from the shaft geometry chosen, the local values of q on As are associated 

with significant uncertainty due to geospatial variability and limited sampling.  For instance, in 

the case of rock, the measured local values of q at a site may be available from core sampling 

and laboratory testing as 2/tuqqq ε= , where qu is the unconfined compression strength, qt the 

split tension strength, and ε the local recovery.  Similarly for soil, the cone penetrometer (CPT) 

tip resistance at a given depth may be used to assess local side friction by multiplying a soil and 

installation method factor.  In the case of cylindrical shafts of length L and diameter D, which is 

independent of the variability in local ground stiffness (i.e., ultimate, not mobilized), R may be 

determined from the product of the shaft’s lateral surface area As = πDL and the mean ultimate 

unit side friction fs over As as 
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ss fAR =  (3-1) 

where 

∫ ⋅=
sAs

s dAq
A

f 1  (3-2) 

Note that the subscript “s” is used to distinguish variables related to the shaft from variables 

defined on a (quasi) point support such as q (without subscript).  Variable q may be regarded as a 

spatially random (“regionalized”) variable of a certain continuous distribution (e.g., log-normal) 

and spatial correlation structure (variogram).  Its parameters are assumed to be given in terms of 

expectation m, variance σ2, and covariance function C(h).  As discussed in more detail in the 

previous chapter, C(h) is a measure of spatial correlation between values of a variable, which are 

separated by a distance h, and is directly related to the variogram γ(h), i.e., σ2 – C(h); 

furthermore, by definition, it is known that C(0) = σ2.  In practice, the above assumption of 

known parameters m, σ2, and C(h) corresponds to situations where the geostatistical properties of 

q at a site are known with high confidence (e.g., from exhaustive core sample testing), and the 

shaft is located at a random location on the site.  Different situations may arise when, (1) core 

sampling is limited such that m is also associated with some uncertainty; and (2) core sample 

data are available in the vicinity of a known shaft location for conditioning.  While (1) increases 

the uncertainty in fs and R, (2) tends to decrease it.  Both aspects are investigated in Chapters 4 

and 5, respectively. 

3.2  Variance Reduction Factor α for Side Friction 

Due to Equations 3-1 and 3-2, fs and R are also random variables in space whose properties 

depend on those of q and As.  In the present work, As is considered to be deterministic, i.e., the 

uncertainty in shaft surface area is neglected with respect to uncertainty in rock/soil strength. 



 

 - 38 -

Since, for this case, the relationship between fs and R in Equation 3-1 is very simple, the 

following discussion is based on fs and the propagation of uncertainty through Equation 3-2.  

Variable fs is described to second order by its expectation ms and its variance σs
2.  Due to the 

simple linear relationship of the arithmetic averaging process in Equation 3-2, 

mms =  (3-3) 

may be immediately found by taking the expectation on both sides.  Equation 3-3 states that the 

expected values of q and fs are identical.  On the other hand, the variability in fs is reduced with 

respect to q as a result of the spatial averaging over the shaft surface resulting in σs
2 < σ2.  This is 

introduced in Chapter 2 as “upscaling.”  In the present case, q may be considered as defined on a 

point support (cores sample dimensions much smaller than spatial correlation ranges) as opposed 

to fs, which is defined on a support equal to the shaft’s lateral surface As.  Factor α can be intro-

duced as the factor of variance reduction between q and fs and is determined by the relationship 

∫ ∫==
s sA As

s AdAhC
A 2122

2

)('1
σ
σα  (3-4) 

where C′(h) = C(h)/σ2 is the correlation function or the covariance function normalized to unit 

variance.  While Equation 3-4 implies the assumption of geostatistical stationarity, it is general in 

that C′ (h) can be anisotropic (h is then a directed magnitude) of any permissible type and 

∫=
sA

s dAA  can be any joint or disjoint domain in one or more dimensions.  It expresses that α is 

nothing but the arithmetic average of the normalized covariance values that correspond to all 

possible combinations of two points in the averaging domain As.  If As consists of a discrete 

number of n points with statistically independent observations of some random variable, then 

Equation 3-4 reduces to the well known formula of the standard error σs
2 = σ2/n, i.e., α = 1/n.  
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On the other hand, for perfect correlation over As, i.e., C′(h) ≡ 1, Equation 3-4 shows σs
2 = σ2 or 

α = 1.  These observations indicate a fundamental qualitative relationship:  The larger the 

averaging domain with respect to the spatial correlation length, i.e., the more independent 

data included in the averaging process, the larger is the variance reduction from σ2 to σs
2 

and the smaller is α.  It may be worthwhile noting that Equations 3-3 and 3-4 are valid 

independent of the actual distribution type of q, i.e., they are independent of higher order 

statistical moments, such as skewness or kurtosis. 
 
 
3.2.1  Single Shaft Foundations 

For single shaft foundations, ∫ ∫ ==
L

s DLdzdDA
0

2

0 2

π

πϕ  is the lateral surface area of a cylinder 

of diameter D and length L, and Equation 3-4 becomes 
 

( ) ∫ ∫ ∫ ∫=
L L

i dzdzddhC
L 0 0

2

0

2

0
21212 )('

2
1 π π

ϕϕ
π

α
 (3-5) 

where C′(hi) is the normalized covariance function with unit variance, isotropic correlation 

structure and unit range.  By limiting the further analysis to cases of “vertical anisotropy” (i.e., 

isotropic range in horizontal plane different from range in vertical direction) ih =   

( ) ( )2 2
h h v vh a h a+ is used as the isotropic lag distance normalized to unit range with hh = 

Dsin[(φ1-φ2)/2] and hv = z1 – z2 being the horizontal and vertical lag distance components, 

respectively.  Variable ah is introduced as the isotropic correlation length in all directions of the 

horizontal plane, while av denotes the correlation length in the vertical direction (for ah ≠ av this 

is introduced as geometric anisotropy in Figure 2-6(a)).  C′(hi) is determined from an experi-
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mental variogram in practice and is here assumed to be of the spherical (Equation 3-6) or 

exponential (Equation 3-7) type as depicted in Figure 3-1. 
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Figure 3-1.  Normalized spherical and exponential covariance functions of unit variance 
and unit isotropic correlation range from Equations 3-6 and 3-7, respectively. 

 
 

From Equation 3-5, it is evident that the variance reduction factor α depends on both the 

spatial correlation structure of q as well as the shaft geometry and may be assessed by using 

C′(hi) from Equation 3-6 or 3-7 and a set of respective parameters L, D, av, and ah.  Results from 

numerical integration in terms of α1/2 (using the square root for better graphical representation 

and later convenience) as a function of the dimensionless variables L/av and D/ah are represented 

in Figure 3-2(a) (spherical) and Figure 3-2(b) (exponential).  In agreement with the observation 

discussed earlier, α decreases as L/av and D/ah increases, i.e., as averaging occurs over a larger 

number of correlation ranges and, thus, independent data.  In the extreme case of either L/av or  
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Figure 3-2.  Integration α1/2 = σs/σ as a function of L/av and D/ah for single shafts:  
(a) spherical; and (b) exponential covariance model (Equations 3-6 and 3-7, respectively). 
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D/ah being very large (e.g., nugget variogram with very short range), α approaches zero.  In the 

opposite case of L/av and D/ah equaling zero, no effective averaging and variance reduction 

occur leading to α = 1.  Comparing values of α from Figure 3-2(a) for the spherical covariance 

model and Figure 3-2(b) for the exponential covariance model reveals both qualitative and 

quantitative similarity.  The most significant differences occur where both L/av and D/ah are 

smaller than approximately one and the exponential model shows smaller α values.  This 

behavior is easily understood by inspection of Figure 3-1 illustrating a faster decay of correlation 

for the exponential model over short distances, hence, more effective averaging and lower α.  

For larger distances, the exponential model is seen to preserve more correlation than the 

spherical model and, after integration, both effects balance out leading to insubstantial 

differences in α between the spherical and exponential covariance model.  For an analytical 

derivation and validation of α for the spherical model with D/ah = 0, see Appendix B giving the 

simple expression α = 0.75(av/L) – 0.2(av/L)2 for this case and L/av ≥ 1, which will frequently be 

required in the sequel and denominated by α0.  It may be further observed from Figure 3-2 that 

minimum (optimized) values for α with given ah and av are only achieved in the impractical cases 

of either L or D approaching infinity (α going to zero).  Similarly, maximum (worst case) values 

for α, given shaft dimensions L and D, are obtained for the trivial condition of both ah and av 

approaching infinity, in which case no effective averaging and variance reduction takes place (α 

going to one). 

 
3.2.2  Multiple Shaft Foundations 

In case more than a single shaft (pile) is deployed in a foundation (i.e., under a single cap) 

then As in Equation 3-4 becomes the conjunction (sum) of all lateral surface areas of the shafts 

involved.  That is, the covariance function is not only averaged over all possible location 
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pairs on each shaft, but also between shafts.  An equivalent interpretation is to imagine each 

individual shaft’s resistance as a random variable (of upscaled variance from Equation 3-5) with 

known covariances to all the other shafts (these upscaled covariances are simply the means of all 

covariances between location pairs, where one location is on one pile and the other location on a 

different pile at a certain distance).  As separation distances between shafts are typically regular 

(e.g., 3D between shaft centers), the latter interpretation is more efficient for mathematical 

implementation.  The upscaled variance of a multiple shaft foundation is then nothing but the 

variance of the mean of a number of correlated variables, which is known to be equal to the 

mean of all the elements of the variance-covariance matrix of the individual shafts. 

With this, variance reduction charts analogous to Figure 3-2 for arbitrary number of shafts 

and arranged in arbitrary geometries under a pile cap, may be generated.  Figures 3-3 and 3-4 

represent two examples for triple and quadruple shafts, respectively.  It may be seen that the 

qualitative aspect is not significantly different between single, triple, and quadruple shafts, how-

ever, variance reduction for equal L/av and D/ah is the larger (i.e., α smaller), the more individual 

shafts are deployed.  This is again due to the larger horizontal spreading of the foundation’s ele-

ments causing a more effective horizontal averaging.  In practice, however, single and different 

types of multiple shaft foundations typically possess different shaft design diameters and length 

(e.g., individual shaft of multiple shaft foundation are thinner as a single shaft), which will affect 

this comparison.  Note, on the other hand, that the thick continuous lines of D/ah = 0 in Figures 

3-2(a), 3-3, and 3-4 are identical as they correspond to a very large horizontal correlation length, 

for which horizontal averaging becomes zero and, as a consequence, the geometry of the founda-

tion in the horizontal plane does not matter anymore.  In other words, spatial averaging only 

occurs in the vertical direction and the foundation may be conceptually reduced to a vertical line 

of length L for computation of variance reduction. 
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Figure 3-3.  Integration α1/2 for a triple shaft foundation (isosceles triangle) as a function of 

L/av and D/ah (3D shaft separation; spherical covariance model). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-4.  Integration α1/2 for a quadruple shaft foundation (square) as a function of L/av 

and D/ah (3D shaft separation; spherical covariance model). 
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3.2.3  Line Shaft Approximation for Unknown Horizontal Correlation Range 

Since variogram inference in practice will be based on core sample data from a limited 

number of borings, ah may not always be known.  However, knowing av from the vertical 

resolution of the core samples, Figures 3-2, 3-3, and 3-4 indicate conservative (worst case) 

values for α by assuming very large ah.  As stated above, this is equivalent to not considering any 

effective averaging on As in the horizontal direction or the reduction of the shaft to a vertical line 

of length L (“line shaft approximation”).  Note that the outcome of this line shaft approximation 

in terms of variance reduction is the same for single and any kind of multiple shaft foundations.  

If, however, site conditions and characterization are such that ah is not known, but yet a maxi-

mum value can be stipulated, then this value may be used as the worst case scenario and the 

foundation type will become relevant again for variance reduction. 

 
3.2.4  Nested Variograms and Zonal Anisotropies 

In the case of a nested variogram as discussed in conjunction with Figure 2-5, i.e., the sum 

of nv variogram structures, the variogram may be divided into a number of independent struc-

tures to which Figures 3-2, 3-3, or 3-4 can be applied individually to find an αi (i = 1, 2, …, nv) 

for each structure.  Each structure corresponds to a certain portion σi
2 of the total variability 

∑
=

=
vn

i
i

1

22 σσ  in q, and α for the compound (nested) variogram is determined as the weighted sum 
 

∑
=

=
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i
ii

1

2
2

1 σα
σ

α  (3-8) 

A typical example of nested variograms occurs in the presence of zonal anisotropy compo-

nents discussed in Figure 2-6(b), which lead to different sill values sh and sv of the variogram in 

the horizontal and vertical directions, respectively.  For sh < sv more variability is contained in 

the vertical direction, thus indicating random layering in the spatial distribution of q, which, 
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however, is too erratic to be captured by a vertical deterministic trend or layer model.  In the 

opposite case of sv < sh, a random areal trend in q may be present in the horizontal direction 

between different borings.  Both can be regarded as extreme cases of geometric anisotropy, 

where either a particular variogram component of ah approaches infinity (as in the case of 

random layering) or av approaches infinity (as in the case of random areal trend).  Accordingly, 

for a variogram component corresponding to random layering, a respective αi is obtained from 

the thick continuous line for D/ah = 0, while αi for a random areal trend component is obtained 

from the ordinate (L/av = 0) of Figures 3-2, 3-3, or 3-4. 

Even though ah may not be reasonably inferred from site data, the possible presence of 

random areal trend components is easily recognized by observing a vertical variogram sill sv that 

is smaller than the site variance σ2.  Random areal trend components represent variability in q, 

which is not contained in the vertical direction, and, hence, does not suffer any variance 

reduction with the line shaft approximation.  In Equation 3-8, this is reflected by a respective 

value of αi = 1, i.e., the magnitude (variance) of a random areal trend component, is directly 

propagated into the variance in shaft resistance.  Intuitively speaking, this represents a situation 

of increased uncertainty, since an entire shaft may be located in a zone of either high or low 

strength, which persists over the whole depth of the site investigated.  An analogous reasoning 

can be followed for the opposite situation (but rather irrelevant in practice) of unknown av, 

known ah, and a random layering component in the variogram.  Finally, as pointed out in the 

previous chapter (Figures 2-1 and 2-14), it should be noted that possible deterministic trend 

components in q need to be removed before variogram analysis and application of Figures 3-2, 3-

3, 3-4 or equivalent figures for other multiple shaft configurations, and subsequently added back 

in. 
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3.2.5  Deterministic Layering and Effect of End Bearing 

Chapter 2 lays out the principle of stationarity and explains the effect of dividing a site into 

statistically homogeneous sub-domains if necessary (e.g., Figures 2-1 and 2-14).  Most relevant 

in this aspect is division into sub-domains, which are either horizontally or vertically separated.  

While it is rather unlikely (and to be avoided if happening) that a foundation is partially located 

on more than a single sub-domain in the horizontal direction, it frequently occurs that a founda-

tion penetrates more than one distinct geological layer in the vertical direction.  Moreover, the 

above results are obtained for resistance due to side friction only, i.e., not considering possible 

contributions of end bearing.  Defining the nominal resistances Rn as the expected value of shaft 

resistance, Equations 3-1 and 3-3 immediately lead to Rn = Asm, if the foundation (single or 

multiple shaft) is confined in a single stratigraphic layer.  Due to the proportionality between fs 

and R in Equation 3-1, the foundation coefficient of variation CVR = σs/ms may be rewritten by 

Equations 3-3 and 3-4 as 

qR CV
m

CV αασ
==

2

 (3-9) 

Here CVq = σ/m is the coefficient of variation in the core sample data q.  However, Equation 3-1 

assumes that the properties of q are statistically homogenous over the depth of the foundation 

(single layer) and that end bearing resistance is neglected.  In order to include the possibility of 

stratigraphic layering over the depth of a foundation and the contribution of end bearing, Equa-

tion 3-1 is generalized to 

∑
=

+=
Ln

j
EBsLjLj RfLDR

1
π  (3-10) 

where LLj are the known (deterministic) length intervals of the shaft, and fsLj the respective 

uncertain spatial averages of side friction over the shaft surface in each of nL layers; REB is the 
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uncertain end bearing resistance.  By taking the expectation of R in Equation 3-10 and using 

Equation 3-3, one obtains a more general form of the nominal resistance Rn as 

∑
=

+=
Ln

j
EBLjLjn mmLDR

1
π  (3-11) 

where mLj are the expected values of fsLj (and hence q) in each layer and mEB is the expected 

value of end bearing resistance.  By considering all fsLj (j = 1, 2, …, nL) and REB as independent 

random variables in Equation 3-10 (reasonable in view of discontinuous layering and ultimate 

limit state), the variance σR
2 of R can be written as 

∑
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+=
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EBsLjLjR LD

1

222222 σσπσ  (3-12) 

where σsLj
2 are the variances of fsLj in each layer and σEB

2 is the variance in end bearing 

resistance.  From Equation 3-4 σsLj
2 = αLjσLj

2 is known, where αLj is obtained from Equation 3-8 

for each layer and σLj
2 is the variance in q for each layer.  A generalized expression for CVR 

from Equations 3-11 and 3-12 is 
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which reduces to Equation 3-9 for nL = 1 (single layer) and mEB = σEB
2 = 0 (no end bearing). 

Note that Equation 3-13 is also general in the sense that contributions to Rn from previously 

subtracted deterministic trend components in one or more layers may be simply added to the 

denominator, while the numerator remains unaffected.  In summary, Equations 3-11 and 3-13 are 

obtained by considering the contributions of side friction in each layer and end bearing to total 

shaft resistance R as independent random variables with different expected values and variances 

that can be added up to arrive at Rn and CVR of the whole shaft.  While respective parameters for 
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side friction resistance may be obtained for each individual layer as described above, the 

determination of mEB and σEB
2 for end bearing is discussed in the following section. 

3.3  End Bearing Resistance and Uncertainty for Single Shafts 

The shaft’s tip resistance Qtip is found by multiplying the mobilized unit tip stress bq by the 

tip’s cross-section area.  The mobilized unit tip resistance of the shaft is a function of the shaft’s 

displacement (FHWA: FB-DEEP) as 

0.67
b tq W= Λ   (3-14) 

where   Λ = Elastic compressibility parameter of the shaft; and 

            Wt  = Displacement at top of shaft. 

The settlement of the bottom of the shaft Wb is computed from the elastic shortening of the 

shaft as follows:  
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 (3-15)  

where Ec  = Young’s modulus of the concrete shaft; 

 Qtop  = Force at top of shaft; and 

 Qtip  = Force at bottom of shaft (qb Ashaft). 

The shaft’s tip elastic compressibility parameter Λ is given as a function of Θf , Γ, and Ω as 

follows: 

0.5 0.5
c
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m

EL L0.37 0.15 1 log 0.13
D D E

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞Γ = − − +⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟
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 (3-16) 
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which gives Λ as 

0.670.5

m

L LL 200 1
D DD0.0134E

L L1
D
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⎩ ⎭

 (3-18)  

where Em = is the mass modulus of the rock;                           

L   = Total length of shaft; and 

     D  = Diameter of the shaft. 

In FHWA’s (FB-DEEP) tip resistance versus tip displacement approach, the Young’s 

modulus of the rock mass Em is of significant importance.  The latter is different from the 

Young’s modulus of intact rock samples Ei measured in the laboratory (ASTM D3148).  The 

rock mass Young’s modulus Em represents the whole mass including fissures, voids, slip planes, 

etc.  O’Neill et al. (1996) suggests a correlation (Table 3-1) between the Ei and Em based on rock 

quality description (RQD).  If RQD values are less than 20%, the RQD correlation for 20% is 

used.   

 
Table 3-1.  Estimation of Em/Ei Based on RQD  

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 Source:  O’Neill et al. (1996).    
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Of interest is the relationship between Florida limestone mass modulus Em and intact 

Young’s modulus Ei.  In tests, synthetic limestone specimens with various strengths were cast 

with different volume percentages of voids (resembled with the inclusion of styrofoam pellets).  

A comparison of no void Young’s modulus (Ei)versus mass modulus (Em) values with different 

void volume percentages (i.e., recovery) was completed.  Shown in Figure 3-5 are the Em/Ei 

ratios as reported by O’Neill et al. (1996) and University of Florida (UF).  Evidently, the UF data 

fall between O’Neill’s open and closed joint data.  Also, there exists a linear relationship 

between Em/Ei for recoveries above 50% and below this is a sharp drop off. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-5.  O’Neill et al. (1996) Em/Ei versus RQD and UF Em/Ei versus recovery. 
 
 

Shown in Figure 3-6 is a typical stress-strain plot from an unconfined test on Florida 

limestone recovered from 17th Street Bridge near the load test LTSO4 at Pier 10.  A total of 102 

unconfined tests were performed by State Materials Office (SMO) personnel on rock cores 

recovered in six boreholes (see Figure 2-9(a)) at 5-foot spacing near LTSO4.  The analysis  
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Figure 3-6.  Secant versus tangent Young’s modulus on 17th Street data from LTSO4. 
 
 
considered both the secant Young’s modulus as well as the tangent Young’s modulus in the 

assessment.  From the boring logs, the recoveries varied from 65% to 95% with a mean value of 

75%.  Based on Figure 3-5, an Em/Ei ratio of 0.45 was selected, and the mass modulus was 

computed using both the secant and tangent Ei.  Figures 3-7 and 3-8 show the probability density 

distribution for the tangent and secant mass moduli, using both the recent LTSO4 data (102 

tests), as well as the original design data (16 tests).  Also shown in each figure are summary 

statistics (median, mean, standard deviation, and CV) of the data as well as log-normal fits to the 

data. 

Evident from a comparison of Figures 3-7 and 3-8, the mean of the tangent modulus is 

approximately 1.8 times the secant mean modulus, but the variation CV of each are quite similar.  

The latter suggests an inherent or systematic bias associated with the testing process.  One 

possible explanation is the sample preparation, i.e., cutting of sample with circulating saw 
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Figure 3-7.  Tangent mass modulus of 17th Street Bridge (118 values). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-8.  Secant mass modulus of 17th Street Bridge (118 values). 
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may create asperities, wobble, and even vibration-induced micro damage at the ends.  Another 

explanation could be the use of compressible paper or the presence of micro particles at the ends 

of the specimens.  Of interest is the impact the secant versus the tangent mass modulus has on 

the mobilized tip resistance (Equations 3-16 through 3-18). 

Clearly, from Figures 3-7 and 3-8 the mass modulus of the rock varies considerably over 

the site as well as within 3D below the shaft and must be accounted for in Equations 3-16 

through 3-18.  The first work on elastic solutions (stress and deformation) for layered material 

beneath a foundation was reported by Ueshita and Meyerhof (1967) and later by Poulos and 

Davis (1972).  That work featured two layer solutions that considered different stiffness or 

moduli representations for each layer.  The work introduced an equivalent modulus [i.e., E of 

layer 1 × coefficient (function of E1/E2 and layer thickness)] to evaluate footing settlements.  

Subsequent efforts (Menard et al. 1972) introduced the use of harmonic mean, 

⎥
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and in the case of different layer thickness, 
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Recently, Fenton and Griffiths (2005) showed an excellent correlation between finite element mod-

eling (FEM) and a single layer solution using the geometric mean for the material modulus, i.e.,  
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It should be recognized that the geometric mean generally lies between the arithmetic and 

harmonic mean and it was the modulus used to characterize drilled shaft end bearing resistance 

qb (Equation 3-14).   
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Also, of importance is the influence of spatial correlation (e.g., covariance function) on the 

geometric mean modulus (Eg).  Specifically, Equation 3-21 requires the sum or average of ln 

(Em) over distance (3D) below the footing.  If Y is allowed to equal ln(Em), i.e., the term inside 

the parentheses of Equation 3-21, then geometric mean (Eg) becomes the simple arithmetic 

average, i.e., 1/n ∑Y  = F.  Note, because Y [ln(Em)] is a random variable, so is F and it will have 

the general summary statistics, i.e., mF, and  σ2
F.  As discussed with side friction, the mean of 

F(mF) will be the same as mY; however, the variance of F, i.e., σ2
F will be reduced by the 

averaging process (i.e., 1/n∑Y = F) or σ2
F = α σ2

Y, where σ2
Y represents the variance of ln(Em) 

over the site.  As was found with side friction, Equation 3-5 for α or the nomograph (Figure 3-2) 

may be used to assess α for the case of D=0 (i.e., thick line), and appropriate vertical correlation 

length av.  Once the value of α has been assessed, then the random function F (mF =mY; and σ2
F = 

α σ2
Y) is known and it may be substituted back into Equation 3-21 to obtain Eg, i.e., Eg = exp 

(F), which is also a random function.    

For the case of 17th Street Bridge, the ln(Em) was calculated for all the new and old tangent 

data, i.e., Figure 3-7 with a mean (mY of ln (Em)) of 9.27 ksf, and the standard deviation (σY of 

ln(Em)) of  0.41 ksf.  Next, the alpha (α) was obtained for D = 0, L=30 ft, and av = 5, 10, and 15 

from Figure 3-2 from which σ2
F = α σ2

Y was found.  Subsequently, a Monte Carlo simulation 

was performed to generate typical F values, which were substituted into Equation 3-21, i.e., Eg = 

exp (F) to give the distributions shown in Figures 3-9, 3-10, and 3-11. 
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Figure 3-9.  Geometric mean modulus Eg assuming correlation length a = 5 ft. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-10.  Geometric mean modulus Eg assuming correlation length a = 10 ft. 
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Figure 3-11.  Geometric mean modulus Eg assuming correlation length a = 15 ft. 
 
 

Of interest is a comparison of the geometric mean modulus (Eg) with the original field data 

(Em), as well as the inverted log-normal distribution (i.e., exp (Y)), which is shown as the red 

curve in Figure 3-7 and has summary statistics of mean = 13,140 ksf, standard deviation, σ = 

10,326 ksf, and CV = 0.79.  The red curve represents what the field samples should look like if 

enough samples were recovered and the mass modulus (Em) was log-normally distributed.  As 

expected, the mean of geometric mean (μ) in Figures 3-9 through 3-11, was reduced from both 

the field sample mean (12,689 ksf) and assumed inverted log-normal mean (13,140 ksf).  

However, larger changes occurred in the CV of the Eg versus the original field (0.47) and 

inverted log-normal CV (0.79).  Specifically, due to spatial correlation represented in the 

covariance function as correlation length a (5 ft, 10 ft, and 15 ft), the CV of Eg was reduced to 

0.36, 0.47, to 0.55, respectively.  The highest reduction in CV of Eg to 0.36 is due to the lack of 
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correlation between Em over short distances (i.e., more random), which results in lower 

variability in Eg when averaged geometrically. 

Using the geometric mean function (Eg, Figures 3-9 through 3-11) in Equations 3-16 

through 3-18, and subsequently Equation 3-14, the distribution of the contact stress qb at the 

bottom of the drilled shaft was obtained for a top shaft movement of 1.6″ (field data), as shown 

in Figures 3-12, 3-13, and 3-14.  Note, the figures represent the expected distribution of end 

bearing on the east side of the site where all the data were collected (i.e., vicinity of LTSO4).  

From earlier analysis, i.e., Figure 2-11, the variograms showed typical vertical correlation length 

of approximately 5 ft, which from Figure 3-12 suggests a mean unit tip resistance of 121 ksf with 

a range (based on one standard deviation above and below the mean) of 85 ksf to 155 ksf.  The 

actual recorded unit tip resistance was 120 ksf for LTSO4 and the other east side shaft LTSO3 

had a resistance of 110 ksf.  Both were close to the mean and well within the one standard 

deviation (84 to 158 ksf). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-12.  Histogram/PDF of contact stress qb using Eg with correlation length a = 5 ft. 
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Figure 3-13.  Histogram/PDF of contact stress qb using Eg with correlation length a = 10 ft. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-14.  Histogram/PDF of contact stress qb using Eg with correlation length a = 15 ft. 

 

Old+Tangent a=10 for Eg

0

2

4

6

8

10

12

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

Range(Qb,ksf)

Pr
ob

ab
ilit

y(
%

)



 

 - 60 -

Knowing the mean unit tip resistance, the total nominal tip resistance (after conversion to 

tsf) is obtained by multiplication with the circular tip area (Atip = 42π/4 for D = 4’) resulting in 

mEB = 760 tons.  Its standard deviation or variance σ2
EB = A2

tip(37/2)2 = 53991 tons2 gives a 

coefficient of variation CVEB = 0.31.  The variance of the whole shaft (Equation 3-12) may be 

found, as well as its coefficient of variation CVR (Equation 3-13) from which the LRFD 

resistance factors (Φ) may be determined (Section 3.4).  Of interest is the scale of variance found 

for the shaft’s side resistance versus its end bearing, which will impact the final LRFD Φ 

assigned to the whole shaft (see case study in Section 3.6.1). 

3.4  Development of LRFD Φ 

Knowing CVR from Equation 3-9 or 3-13, Equation 3-22 as used by the FHWA and 

Equation 3-23 can be applied to determine LRFD resistance factor Φ 
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Here, CVQ denotes the coefficient of variation of the random loads.  Resulting from this, Figure 

3-15 shows a chart of Φ as a function of CVR and user selected reliability index (β).  For a given β 

the probability of failure is known to be G(-β), where G is the standard normal cumulative distri-

bution function.  The remaining dimensionless parameters in Equations 3-22 and 3-23 are chosen 

according to the FHWA/AASHTO recommended values (for load cases I, II, and IV), i.e.,  
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Figure 3-15.  LRFD resistance factor Φ as a function of resistance coefficient of variation 
CVR and reliability index β (Equation 3-22). 

 
 

The bias factors λR, λQD, and λQL are hereby defined as respective means of a large number 

of observed ratios between measured and predicted values.  Furthermore, it is recalled that 
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Equation 3-22 is based on the assumption of log-normal resistance and load distributions and can 

be derived by the First Order Second Moment (FOSM) method.  While a discussion of the 

properties of the load distribution exceeds the scope of the present work, the assumption of a log-

normal resistance distribution is briefly evaluated.  The fact that q is non-negative and typically 

skewed to the right suggests the fit of a log-normal distribution of q.  In the same way as the 

reduction of variance from q to fs in Equation 3-2 becomes stronger as data independence over 

the averaging domain increases, the central limit theorem predicts a reduction in skewness from 

q to fs, which increases as more independent data are averaged.  It is a property of the log-normal 

distribution that the skewness decreases with the variance and although means of log-normal 

variables are not strictly log-normal in theory, it can be a sufficiently accurate approximation for 

many practical purposes.  As a consequence, the assumption of a log-normal resistance distribu-

tion in Equation 3-22 is plausible, provided that the distribution of q is reasonably log-normal. 

3.5  Practical Implementation 

For the past discussions, the nominal resistance Rn and Φ were found for a given site with 

known pile dimensions.  In practice, however, foundation design usually involves knowing the 

nominal load and selecting the appropriate shaft dimensions L and D for given soil/rock 

properties and reliability index β.  Since Φ is a complex function of L and D, this “inverse 

problem” deserves special attention.  In an effort to find a practitioner-friendly solution to this 

problem, a graphical iteration method is presented in this section based on the “quadrant chart” 

depicted in Figure 3-16.  Four individual charts are arranged in a way that they share their axes 

with two neighboring charts such that when one chart is left at one axis, the respective 

neighboring chart is automatically entered.  By prescribing a value for D, each chart possesses a 

series of curves whose parameters are known.  The purpose of this solution is to perform a 
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graphical iteration process to find L (starting from a guessed initial value) by “looping” through 

the quadrant chart in counter-clockwise direction as described below and demonstrated in the 

next section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-16.  Dimensionless quadrant chart for single shaft design by graphical iteration. 
 
 

Each individual quadrant of the chart represents a fundamental relationship of the design 

process.  Starting in the top-right corner and going counter-clockwise, these relationships are: 

• 1st quadrant:  Φ = f(CVR) as shown in Figure 3-15 from Equation 3-22 where β is a 

known parameter; 

• 2nd quadrant:  L/av = f(Φ) using the LRFD design equation, Qdes = RnΦ = DLπmΦ 

(from Equation 3-3) gives L/av = Qdes/(DavmπΦ), which are hyperbolas 

where Qdes/(Davm) is a known parameter; 
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• 3rd quadrant:  α1/2 = f(L/av) using Equation 3-4 where D/ah is a known parameter; and 

• 4th quadrant:  CVR = f(α1/2) using Equation 3-9 are straight lines where CVq is a 

known parameter. 

Figure 3-16 contains Figure 3-2(a) (variance reduction chart for single shafts) in the 3rd quadrant 

and, as a consequence, is limited to the design of single shaft foundations.  With the substitution 

of either Figure 3-3 or 3-4 (or similar figure for other multiple shaft configuration) into the 3rd 

quadrant of Figure 3-16 results in respective quadrant design charts for triple or quadruple shafts. 

This type of quadrant chart is, thus, directly applicable to single and multiple shaft foundations 

within a single geological layer and neglecting end bearing, however, Equation 3-8 must be 

applied in the transition from the 3rd to the 4th quadrant in the presence of nested variogram 

structures (nv > 1).  It is hereby noted that LRFD Φ values obtained for multiple shaft 

foundations correspond to prescribed probabilities of failure for the whole pier (as opposed to 

individual piles separately). 

Figure 3-16 nicely illustrates the influence of each parameter involved on final Φ values. 

An increase in CVq (larger variability in local strength) or β (lower probability of failure) leads to 

a reduction in Φ.  An increase in Qdes/m requires larger shaft dimensions causing a higher degree 

of spatial averaging and, thus, variance reduction, which increases Φ.  The same is true for a 

decrease in av, as well as for a reduced D, which implies larger L to achieve the required 

resistance and, again, a larger degree of variance reduction (less uncertainty in resistance, 

especially when spatial averaging in the horizontal direction is neglected).  The third quadrant 

shows how D/ah = 0, in fact, is the most conservative assumption for unknown ah, since it leads 

to a minimum value of Φ for all L/av. 

If a foundation is known to penetrate more than one geological layer and, if end bearing 

resistance is to be accounted for, then the problem of finding the entire shaft length L from above 
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turns into the problem of finding the required embedment length Lbot of the shaft in the bottom-

most layer (i.e., usually the bearing layer) penetrated by the foundation.  Assuming end bearing 

resistance and variance are known (Section 3.3), and also knowing the thickness, mean strength, 

and variance (after upscaling over respective portion of foundation depth) of each layer that is 

penetrated through by the shaft, Equation 3-11 and 3-13 can be used to determine a nominal 

value Rn0 and coefficient of variation CVR0 of the total foundation (single or multiple shaft) 

resistance minus the contribution of side friction in the bottom-most layer (= DLbotπmbot).  The 

LRFD design equation for the 2nd quadrant of Figure 3-16 then becomes Qdes = RnΦ = (Rn0 + 

Rbot)Φ, where mbot and Rbot = DLbotπmbot are the mean local strength and side friction resistance, 

respectively, in the bottom-most layer.  By substituting the expression for Rbot into the LRFD 

equation and dividing by the vertical correlation length of the bottom-most layer av,bot one finds 
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where L/av,bot = Qdes/(Dav,botmbotΦπ) is known from above as the relationship obtained for the 2nd 

quadrant if a single layer of properties mbot and av,bot was present without end bearing.  In this 

sense, L represents an equivalent foundation depth due to side friction only in a single layer 

without end bearing, which possesses the same nominal resistance as the actual foundation.  As 

variance reduction is only to be applied to the foundation portion corresponding to Lbot, the 

variance reduction chart in the 3rd quadrant is entered with the reduced value of Lbot/av,bot.  Note 

that the other variances of side friction in the overlaying layers and of end bearing are already 

known and combined in CVR0.  In fact through the present approach, the problem of accounting 

for several layers plus end bearing is effectively reduced to an equivalent problem of a founda-

tion without end bearing, which fully passes a top layer of known thickness (Rn0, CVR0) and 

partially penetrates a bottom layer of embedment Lbot.  
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Leaving the 3rd quadrant, one obtains a value of α1/2 resulting in a variance σ2
bot = 

α(CVq,botDLbotπmbot)2 of side friction resistance in the bottom-most layer, where CVq,bot is the 

local strength coefficient of variation in the said layer.  In analogy to Equation 3-13, CVR of the 

whole foundation (i.e., all layers plus end bearing) is found as 
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which is used instead of the 4th quadrant in Figure 3-16, then to enter the 1st quadrant from below 

and continue the iteration.  This procedure assures that the final LRFD Φ values and foundation 

(single or multiple shafts) design lengths correspond to a prescribed probability of failure for the 

entire foundation (as opposed to each layer and end bearing, separately).  It may be easily seen 

from Equations 3-24 and 3-25 that the approach collapses to the direct application of Figure 3-16 

for Rn0 = 0, i.e., single layer without end bearing.  

3.6  Case Studies 

This section represents a continuation of the case studies in Section 2.5 where respective 

outcomes are used to demonstrate the results of the present chapter for different site conditions. 

Section 3.6.1 works with a well defined variogram and illustrated effects of a nugget component 

in the variogram, unknown horizontal range (line shaft approximation), random areal trend, and, 

finally, demonstrates an application of the quadrant chart in Figure 3-16.  In Section 3.6.2, the 

site possesses two distinct layers with deterministic trends, and variograms do not indicate a 

horizontal or a vertical range to work with such that conservative ways of handling this are 

discussed. 
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3.6.1  17th Street Bridge 

Figure 2-11 indicates the horizontal and vertical correlation ranges are well estimated by ah 

= 12 ft and av = 5 ft, respectively, while the presence or not of a 40% nugget component in the 

total variance may not be reliably determined (Figures 2-11(a) and 2-11(c) versus Figures 

2-11(b) and 2-11(d)).  The mean local strength from core sample data is further known to be m = 

16.1 tsf with a respective coefficient of variation of CVq = 0.53 (Figure 2-10(a)).  Assuming no 

nugget effect, L = 25 ft and D = 4 ft, such that L/av = 5 and D/ah = 0.33 gives α1/2 = 0.33 from 

Figure 3-2(a), CVR = 0.17 from Equation 3-9 and, finally, Φ = 0.74 from Equation 3-22 or 

Figure 3-15 (for β = 3).  Maintaining everything the same, but adding a 40% nugget variance to 

the variogram, Equation 3-8 dictates that α = 0.332 only applies to 60% of the total variance, 

while α = 0 applies to the remaining 40% nugget variance (D/ah and L/av very large in Figure 

3-2).  With this, an overall α = 0.6·0.332 + 0.4·0 = 0.07 is obtained leading to CVR = 0.14 and Φ 

= 0.80.  This illustrates the fact that it is conservative to not assume nugget components in 

the variogram if they are not clearly indicated by the data, since the theoretically perfect 

averaging of the nugget component may lead to underestimation of the actual shaft 

resistance uncertainty.  By following the same procedure, but using Figures 3-3 or 3-4 instead 

of Figure 3-2, respective Φ values can be obtained for triple and quadruple shaft foundations. 

If it is assumed that ah is unknown, which is typical for many practical situations, and then 

the line shaft approximation (thick continuous line) may be adopted, which is the same for single 

and multiple shaft foundations.  For example, without the nugget effect, α1/2 = 0.38 is obtained 

from Figures 3-2, 3-3, or 3-4 leading to CVR = 0.20 and Φ = 0.69.  This is smaller than the 

respective value of 0.74 for ah = 12 ft from above.  An important factor adding uncertainty to 

shaft resistance is random areal trends, which are a type of zonal anisotropy where the vertical 

variogram reaches its sill below the local strength variance.  The portion of variability only 
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contained in the horizontal direction does not experience any effective averaging and, hence, 

variance reduction.  To illustrate this effect, it is assumed that in addition to unknown ah the 

vertical variogram in Figure 2-11 reaches its sill at 0.8 instead of 1.  L/av = 5 is not affected, 

however, its corresponding α1/2 = 0.38 now only applies to 80% of the total variance.  For the 

remaining 20% of the random areal trend component, L/av = 0 leading α1/2 = 1 for the line shaft 

approximation.  The combined variance reduction factor is then obtained as α = 0.8·0.382 + 0.2·1 

= 0.32 giving further CVR = 0.30 and Φ = 0.51, which illustrates the significant impact of a 

random areal trend component when compared to 0.69 for without random areal trend 

component. 

Assuming now that a nominal load Qdes = 2500 tons is given, for example, rather than the 

shaft dimensions, Figure 3-16 may be applied to find a respective Φ for a given shaft diameter 

(e.g., 4 ft).  For the case of unknown ah (without random areal trend) and using av = 5 ft, an initial 

(guessed) value of L = 30 ft gives L/av = 6, which is used as the starting point for the graphical 

iteration (looping) indicated in Figure 3-16.  Theoretically, the iteration could be started 

anywhere in the chart as long as the direction of the iteration is counter-clockwise.  Following 

the dotted line downwards to the continuous line of D/ah = 0 in the third quadrant, α1/2 = 0.35 is 

obtained.  Following the dotted line further to the right into the fourth quadrant, until the line of 

CVq = 0.53 (the coefficient of variation for core sample mean local strength), gives CVR = 0.19 

and, further, Φ = 0.70 for β = 3 in the first quadrant.  Entering the second quadrant with this 

value of Φ shows that the nominal load for the chosen L is almost twice as large as needed 

(Qdes/(Davm) ≈ 13) for the required Qdes/(Davm) = 7.76 (D = 4 ft, av = 5 ft and m = 16.1 tsf).  

Following the dotted line to the left, until the curve for the required Qdes/(Davm) = 7.76 is met, 

initiates a second iteration loop and, by following the sequence of thin dotted lines to thick 
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continuous lines, convergence to design values of L = 20 ft (L/av = 4) and Φ = 0.62, is reached 

rapidly.  This may be compared to an Φ = 0.69 for equal site conditions, but for L = 25 ft.  Value 

Φ, in this case, is larger as a result of the stronger effect of spatial averaging over the longer 

shaft.  Nominal resistances Rn are simply obtained by Qdes/Φ = LDπm and are equal to 4044 and 

5044 tons for L = 20 and 25 ft, respectively. 

In order to include the contribution of end bearing to total shaft resistance, Equations 3-24 

and 3-25 may be used with Rn0 = mEB = 760 tons and CVR0 = CVEB = 0.31, which are the out-

comes in Section 3.3.  Knowing that for a single layer mbot = m and av,bot = av, the last term in 

Equation 3-24 is evaluated as Rn0/(Dπmav) = 0.75, which means that every time the 2nd quadrant 

is left during an iteration cycle, the third quadrant is entered with 0.75 (L/av)-units to the right of 

the value found for L/av.  This is illustrated in Figure 3-17, which contains a replicate of the 

quadrant chart of Figure 3-16 (except for the 4th quadrant) with the present iteration process.  The 

chart is entered at Φ = 0.62 (value obtained above without end bearing, but could be any other 

value) and the line is followed to the left until it meets Qdes/(Davm) = 7.76 giving L/av = 4 as 

previously obtained.  However, the 3rd quadrant is now entered at Lbot/av = 4 – 0.75 = 3.25 as 

indicated by the arrow pointing to the right.  Value α1/2 = 0.47 is obtained from the line shaft 

approximation curve and Equation 3-25 with known values of CVR0 = 0.31, Rbot = 

D(Lbot/av)avπm = 4 · 3.25 · 5π · 16.1 = 3286 tons, Rn0 = 760 tons, and CVq,bot = CVq = 0.53 

(Figure 2-19(a)) renders CVR = 0.21, which is used to enter the first quadrant.  Value Φ = 0.66 is 

now found and Lbot/av = 3.0 leading to Rbot = 3033 tons and α1/2 = 0.48.  With all other 

parameters as before, Equation 3-25 now gives CVR = 0.21, which is the same as in the previous 

iteration, thus indicating that the result has converged to a shaft length of L = Lbot = 3 · 5 = 15 ft 

and Φ = 0.66.  This may be compared to L = 20 ft and Φ =  
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Figure 3-17.  Quadrant chart of Figure 3-16 (except 4th quadrant) with graphical  
iteration taking into account end bearing at 17th Street. 

 

0.62 from above, if end bearing is neglected.  However, no general conclusion should be drawn 

from this in terms of increase or decrease in Φ when including end bearing as this depends on 

many factors, such as the magnitudes of side friction versus end bearing resistance and side 

friction versus end bearing CV.  Moreover, it is not only Φ that is affected but obviously nominal 

resistance as well.  For example, Φ with end bearing could be lower than that without end 

bearing, but the shaft dimensions must be generally smaller due to the increase in Rn when 

including end bearing.  In other words, Rn0 from end bearing may have a very small expected 

value mEB with a large CV, but due to the fact that Rn0 is a strictly positive random variable (end 

bearing cannot decrease side friction resistance), it must have some beneficial effect on design in 
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terms of shaft size reduction, but not necessarily in terms of increasing Φ.  It is surmised that in 

cases of extremely low Rn0/Rbot and extremely large CVR0/(α1/2CVq,bot), which should be 

irrelevant for practice, shaft dimension results could be larger when including end bearing.  This 

would be a result of a large error in the assumption of log-normality in Rn being the sum of the 

two log-normals Rn0 and Rbot. 

Note that data used in this example are limited to a specific portion of the site and as such 

Rn and Φ obtained are pertinent to that zone only.  Moreover, it is emphasized that the resistance 

bias factor λR used in Equation 2-22 for computing Φ is equal to 1.06 as prescribed by FHWA/ 

AASHTO.  Value Φ is directly proportional to λR, and particular treatment of resistance bias is 

contained in Chapter 6. 

 
3.6.2  Fuller Warren Bridge 

As illustrated by Figures 2-12 and 2-14, this site consists of two distinct geological layers, 

which must be treated as separate sub-domains.  Moreover, each layer possesses a deterministic 

trend component (Figure 2-14(a)), which needs to be removed before geostatistical analysis.  The 

top layer was found to be 10-ft thick with a trend in local strength q as a function of elevation z 

of qtop = -0.97z + 29.56 (16 < z < 26 ft), while core sample data of the bottom layer are available 

down to 17 ft below the bottom of the top layer.  The respective deterministic trend function is 

qbot = 0.14z + 0.72 (0 < z < 16 ft).  The local strength variances of the residuals in each layer are 

known as σ2
top = 18.49 tsf2 and σ2

top = 0.45 tsf2 with variograms shown in Figures 2-15(a) and 

2-15(b).  As noted in combination with these figures, it may not be expected to obtain a 

reasonable horizontal variogram from the available data (only 3 borings spaced by approximately 

40 ft; Figure 2-12(a)).  Furthermore, the number of data for a vertical variogram is very limited 

as well and impairs a reliable interpretation of the vertical variogram of the top layer in Figure 
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2-15(b) (i.e., number of data points in each variogram point < 30).  The vertical variogram for 

the bottom layer in Figure 2-15(a) is better defined (based on more data) and indicates absence of 

a random areal trend component (vertical variogram fluctuates about the total normalized 

variance of one); however, no spatial correlation structure (i.e., av) may be inferred.  As it is 

highly non-conservative to adopt nugget variograms for spatial averaging (α would be zero), this 

situation deserves special attention. 

One possibility is to adopt av as the distance of minimum data spacing in the vertical 

direction which would approximately correspond to the lag distance of the first point in the 

experimental variogram (e.g., 2 ft in the current example).  However, larger av may be obscured 

by sub-optimal data acquisition and the majority of the data may have larger separations.  As a 

conservative method it is, thus, recommended to use the minimum number nmin of data in a 

boring and over the depth interval of shaft implementation to determine α0 as 1/nmin.  This is even 

conservative for equally spaced data, e.g., for L/av = 10, where a variogram slope would only be 

observed if more than 10 (regularly spaced) samples are taken over L.  If exactly 10 samples are 

taken, the variogram would still appear as a pure nugget effect and a conservative adoption of av 

would give av = L/10, i.e., L/av = 10 and α0 = 0.272 = 0.07 from Figure 3-2.  In contrast, α0 = 

1/nmin = 1/10 = 0.10, which is more conservative.  In the same way, if only 5 samples were taken, 

a conservative av would be L/5, i.e., L/av = 5 and α0 = 0.382 = 0.14 from Figure 3-2, as opposed 

to α0 = 1/nmin = 1/5 = 0.20.  However, if many data are collected and the experimental variogram 

still does not indicate any spatial correlation structure, then α0 = 1/nmin leads to smaller, yet 

conservative, values.  Thus, it is assured that small values of av may only be adopted if it is 

clearly indicated by the experimental variogram or, if no spatial correlation is indicated, but a 

sufficiently large amount of data are collected. 
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For the present case, assuming L = 25 ft (i.e., 10 ft in top layer and 15 ft in bottom layer 

such that z > 1 ft), Appendix A indicates nmin,top = 7 and nmin,bot = 8 leading to σ2
R,top = σ2

top/7 = 

2.64 and σ2
R,top = σ2

top/8 = 0.06 tsf2.  These variances apply to the nominal resistances Rn,top and 

Rn,bot, which are obtained by integrating the deterministic trend functions of q over the respective 

portions of the foundation (single or multiply shaft) surface.  As the trend functions are linear, 

this is equivalent to finding the mean of the trend function for the shaft embedment in each layer 

and multiplying by the respective shaft surfaces.  With this, Rn,top = Atop(14.04 + 4.34)/2 = 1154 

tons and Rn,bot = Abot(0.86 + 2.96)/2 = 360 tons (assuming single shaft: Atop = 4 · 10 · π  = 125.6 

ft2; Abot = 4 · 15 · π = 188.4 ft2).  As indicated by Equation 3-13 (without end bearing), the total 

shaft resistance Rn = Rn,top + Rn,bot = 1514 tons with a variance of σ2
R = A2

topσ2
R,top + A2

botσ2
R,bot = 

43777 tons2 giving CVR = 0.14.  For a chosen value of β = 3, this results in Φ = 0.80 from Figure 

3-5.  Note that data used are limited to a specific portion of the site and as such Rn and Φ 

obtained are pertinent to that zone only.  Moreover, it is emphasized that the resistance bias 

factor λR used in Equation 2-22 for computing Φ is equal to 1.06 as prescribed by FHWA/ 

AASHTO.  Value Φ is directly proportional to λR, and particular treatment of resistance bias is 

contained in Chapter 6. 

Without previous treatment of the data (separation into layers and trend removal), Figure 

2-13 shows CVq = 1.07.  Allowing for a (generous) variance reduction factor of α = 1/(7 + 8), 

i.e., considering 15 samples per boring, CVR = 0.28 and Φ = 0.55.  In addition, not considering 

two separate layers could lead to significant misinterpretations of the variogram, e.g., inference 

of a large variogram range, which would only be due to the discontinuity between the layers.  By 

taking the average of all data in Figure 2-13(a) a respective nominal resistance would be Rn = 

1444 tons. 
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CHAPTER 4 
USE OF PRE-DESIGN BOREHOLE STRENGTH DATA 

 

4.1  Uncertainty due to Limited Data 

While results of the previous chapter are based on the assumption of perfectly known 

geostatistical site parameters of local strength q (i.e., mean, variance and variogram), this section 

considers the more practical situation of a limited number of nc core sample data available from 

nb borings of approximately equal depth (e.g., 30 ft) and approximately equally spaced (e.g., 

every 150 ft) along a bridge site.  This may correspond to a first set of borehole data obtained 

from a site before initiating the design process indicating (1) whether the site is geostatistically 

homogeneous and can be treated as a whole or needs to be split up into a number of sub-domains 

of different but internally stationary geostatistical parameters to be studied separately (see 

Chapter 2); (2) mean m and variance σ2 of q; and (3) the variogram γv in the vertical direction 

(along boreholes).  Since data at equal depth (i.e., horizontally aligned) are typically scarce and 

excessively far spaced at this stage of site characterization, the horizontal variogram γh remains 

unknown.  Obviously, depending on where exactly and how many borings and core samples are 

taken, estimates of m may vary reflecting an additional uncertainty which is not considered in 

Equation 3-4.  As the locations of individual foundations to be constructed are not yet deter-

mined at this stage (i.e., random in some sense), the variance of this uncertainty simply adds to 

the variance in resistance R due to the unknown distribution of q over the (single or multiple) 

shaft surface leading to σR
2 = ασ2 + σ2/ne, where ne is an effective number of independent core 

sample data collected (σ2/ne can be shown to correspond to the kriging estimation variance of m 

(Kitanidis 1997)).  Since core sample data are correlated in the vertical direction according to γv 

and may be considered uncorrelated horizontally due to the large separation distances ne = nb/α0 

(nb ≤ ne ≤ nc), where α0 is the variance reduction factor for a fictitious shaft replicating a boring 
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of length Lb and very small diameter D = 0.  Knowing L ≈ Lb and conservatively approximating 

α by α0 (using line shaft approximation as horizontal range ah is unknown; thick continuous line 

in Figure 3-2), σR
2 = α0σ2 + α0σ2/nb may be written leading to 
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where the last expression results from Equation B-5 (see Appendix B) and is valid for L/av ≥ 1, 

which is typically the case in practice.  Equation 4-1 is used instead of α in Equation 3-9 to 

account for limited sampling in the presence of unknown horizontal variogram.  In the presence 

of more than one layer α from Equation 4-1 with respective layer thicknesses L is used instead of 

αLj for each layer in Equation 3-13.  If γv is nested, Equation 3-8 may be used to find a respective 

value of α0 to be used in Equation 4-1 or, alternatively, αb from Equation 4-1 is used in Equation 

3-8 to obtain a final variance reduction factor.  Evidently αb > α, since α0 > α (neglecting 

horizontal averaging) and 1/nb > 0 (limited/incomplete sampling of the site).  For large nb, 

sampling is exhaustive and αb = α0.  This is illustrated in the graphs in Figure 4-1, which is 

equivalent to Figure 3-2(a) with additional dashed curves from Equation 4-1 for nb = 3 and 6.  In 

the same way as the line shaft approximation (thick continuous line) is the same for single and 

multiple shaft foundations, Equation 4-1 is also equally valid for single and multiple shaft 

foundation, i.e., the dashed lines in Figure 4-1 may be directly transferred to Figures 3-3 and 3-4 

for triple and quadruple shafts, for example.  Resulting charts are, hence, extensions of Figures 

3-2, 3-3, and 3-4 and may directly be used in the 3rd quadrant of Figure 3-6.  Furthermore, all 

aspects of deterministic layering and inclusion of end bearing discussed in connection with 

Figure 3-6 remain valid. 
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Figure 4-1.  Term α1/2 (continuous) from Figure 3-2(a) as a function of L/av and D/ah.   
Term αb

1/2 (dashed) from Equation 4-1 as a function of L/av and nb (D/ah = 0). 
 
 

Besides LRFD Φ, a nominal strength for foundation design is required.  Once the pier 

locations are known, it would be conservative to select the nominal strength as the lower value 

between the mean strength measured at the nearest boring and the mean strength over all borings 

in the defined sub-domain.  The former corresponds to the worst case scenario if correlation 

between shaft and boring is strong, while the latter corresponds to the opposite case of no 

correlation. 

4.2  Minimum Data Requirements 

Equation 4-1 immediately shows how αb decreases (and, hence, Φ increases) as nb 

increases, i.e., as more borings are deployed, thus improving site characterization.  Preliminary 

experience indicates that nb ≥ 3 per site (or homogeneous sub-domain; see Chapter 2) may be an 
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acceptable guideline based on the criterion of reliable inference of m, σ2, and γv.  The total 

number of core samples nc does not directly affect αb, which is due to the assumption that they 

are taken at intervals below the vertical correlation range and down to a depth of approximately 

L.  The former is required in the first place to be able to infer a reliable vertical variogram for 

determination of α0 and additional core samples between nc existing core samples would only 

deliver redundant (highly correlated) data, which do not significantly contribute to improve site 

characterization (i.e., increase ne).  From this perspective, vertical correlation ranges at the order 

of 4 to 8 ft, as observed at a limited number of sites in Florida, would ask for core sampling at 

approximately 2- to 3-ft intervals.  Knowing the vertical variogram from the first three borings, 

the vertical sampling resolution of additional borings may be decreased to intervals not larger 

than the vertical correlation range observed from the first three borings (in order to not signifi-

cantly invalidate Equation 4-1).  From this, it is expected that typical values of approximately 50 

< nc < 100 are required in practice, which is considered sufficient for histogram construction and 

estimation of m and σ2.  Separate inference of σ2 from the variogram is of great importance, 

since only the sill of the (unknown) horizontal variogram sh may reach σ2, while the sill of the 

(known) vertical variogram sv may be smaller than σ2, thus underestimating the spatial variability 

of a site.  The difference of σ2 – sv is due to variability only present in the horizontal direction 

and referred to as random areal trend (see Chapters 2 and 3).  It is a form of zonal anisotropy, 

which reflects the intuitive and non-conservative fact that a whole shaft might be located in a 

horizontal area of either weak or strong ground, such that variance reduction due to spatial 

averaging does not fully occur.  The condition nb ≥ 3 also serves to guarantee detection of 

possible random areal trends at a site. 
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4.3  Case Study – 17th Street Bridge 

In the example of Section 3.6.1, m = 16.1 tsf was assumed to be reliably known.  From 

Figure 2-9(a), however, it is seen that this information is based on 6 borings only.  By ignoring 

the horizontal correlation between these borings (in practice they would be spaced much further 

than 10 ft on average), and regarding the horizontal correlation length ah as unknown, this 

translates into using Equation 4-1 with nb = 6.  Maintaining the vertical correlation length av = 5 

ft, coefficient of variation in local strength CVq = 0.53, nominal load Qdes = 2500 tons, shaft 

diameter D = 4 ft, and reliability index β = 3, Figure 4-2 may be used to graphically find a design 

shaft length L by the same procedure described in Section 3.6.1, but by using Figure 4-1 and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-2.  Design quadrant chart of Figure 3-6 with Figure 4-1 in 3rd quadrant. 
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the graph for nb = 6 instead of Figure 3-2(a) in the 3rd quadrant.  As shown by the iteration loops 

in Figure 4-2, this results in a shaft design length L = 21 ft (L/av = 4.2) and Φ = 0.60, as opposed 

to L = 20 ft and Φ = 0.62, if m is assumed to be reliably known.  Clearly, for nb < 6 the differ-

ence would be greater. 
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CHAPTER 5 
USE OF BOREHOLE STRENGTH DATA INSIDE  

THE FOOTPRINT OF A SHAFT 
 

5.1  Uncertainty Reduction due to Data in Shaft Footprint 

Knowing the exact locations of each foundation in the design process, allows for collection 

of additional boring data at intervals smaller than the vertical correlation length observed from 

previous borings (Chapter 4) at the center of some or all of the designed foundations.  This 

additional center boring data in the footprint of the foundation allows for improved assessment of 

α and, generally, a higher value of Φ.  

In order to incorporate the influence of boring data in the footprint of a shaft/pier, kriging 

(Section 2.4) is used, which transforms the spatial correlation between the data and the shaft into 

a reduction in final shaft resistance uncertainty σ2
f.  Mathematically, this is expressed by Equa-

tion 2-13 through the negative covariance term.  If Equation 2-13 is divided by the local point-to-

point strength variance σ2, an equation is obtained for a variance reduction factor αc in the 

presence of a center boring between σ2 and shaft mean side friction uncertainty σ2
f . 
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Assuming for now that data are limited to a single boring at the center of a foundation (data from 

other borings outside the pier will be included later), the first term in Equation 5-1, i.e., σ2
q/σ2, is 

equal to α0, since σ2
q is the variance of Equation 2-12 and λi = 1/n (estimate of mean unit side 

friction on shaft surface is equal to arithmetic mean of core sample strength in center boring). 

The term σ2
q/σ2 only depends on L/av which is identical to the variance reduction from the line 

shaft approximation.  The last term in Equation 5-1, i.e., A may be zero, positive, or negative, 

and is a function of both L/av and D/ah.  Using Equations 2-10, 2-14, and 2-15 with λi = 1/n, 
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Equation 5-1 may be evaluated for different combinations of L/av and D/ah with respective 

results shown in Figures 5-1, 5-2, and 5-3 for single, triple, and quadruple shafts, respectively.  

By requiring large enough n such that sample separation is smaller than the vertical correlation 

length (see above), the actual number of n becomes irrelevant as additional samples would be 

highly correlated (i.e., deliver redundant information mostly already contained in previous 

samples) and would not affect the outcome of Equation 5-1.  This is equivalent, in other words, 

to assuming that the boring is continuously sampled over the shaft depth. 

Independent of D/ah, it may be observed that αc decreases with increasing L/av, which is an 

expected outcome due to the increasing degree of spatial averaging in the vertical direction.  

Variable A in Equation 5-1 approaches zero when D/ah becomes very large (i.e., very small 

horizontal ranges ah), such that spatial averaging over the shaft surface reduces σ2
m towards zero  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-1.  Term αc
1/2 for a single shaft with one single boring (cross) at the center as a 

function of L/av and D/ah.  

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

L/av [-]

α c1/
2  [-

] D/ah = ∞
Worst case D/ah ≈ 2

0.2

0.5

1

D

The thick continuous line for D/ah = ∞ is identical to α0 (line shaft approximation). 
 The dash dotted line for D/ah ≈ 2 represents maximum values of αc

1/2 for a given 
 L/av, while thin continuous lines indicate αc

1/2 for D/ah < 2. 



 

 - 82 -

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-2.  Same as Figure 5-1, except for triple (triangle) shaft foundations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3.  Same as Figure 5-1, except for quadruple (square) shaft foundations. 
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and the distance between data and shaft surface is larger than ah such that Cov(m,q) = 0.  This is 

shown by the thick continuous lines in Figures 5-1, 5-2, and 5-3, which are all the same and 

identical to the variance reduction α0 of the line shaft approximation as stated above.  As ah is 

increased from zero, σ2
m increases as well while Cov(m,q) remains zero until ah spans the 

minimum distance between the center boring and the shaft surface.  This causes αc to increase up 

to a maximum (worst case; dash dotted line) above which an increase in ah still increases σ2
m, 

however, to a smaller degree.  On the other hand, Cov(m,q) now also increases such that the 

overall effect is a decrease in αc (thin continuous lines).  For very large values of ah, the correla-

tion between the center boring and the shaft surface is very large and αc approaches zero. 

Interesting to observe from Figures 5-1, 5-2, and 5-3 is that the worst case of αc very 

consistently exceeds α0 by approximately 15%, i.e., αc,max = 1.15α0 for all L/av and foundation 

types shown (note that this is not generally true for multiple shaft foundations, if pile separation 

is different from 3D; however, respective values can be computed).  If the center boring (hypo-

thetically) were the only data available, αc,max would be the most conservative value of variance 

reduction to adopt for known av but unknown ah.  Since σ2
q/σ2 = α0 and the worst case scenarios 

occur when Cov(m,q) is still approximately zero, A = σ2
m/σ2 = 0.15α0 may be inferred from 

Equation 5-1. 

The additional borings at the center of foundations add to the nb borings throughout the 

zone or region considered in the previous chapter.  However, it is conservative to assume that 

borings near the same pier location may not necessarily contain independent information (data 

may be correlated), such that the number of independent borings available in a sub-domain is 

defined as nf = nb + fn′ , where fn′  is the number of borings taken inside the footprint of a pier 

(one boring per pier), where previously none of the nb borings (from Chapter 4) were located.  If 
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preliminary borehole testing was performed in the vicinity of every pier location, then nf = nb. 

Without affecting σ2
m/σ2 = 0.15α0 the total amount of (uncorrelated) borings available in a sub-

domain is accounted for by writing σ2
q/σ2 = α0/nf and Equation 5-1 gives 
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Direct comparison to Equation 4-1 is depicted in Figure 5-4 and shows a reduction from αb 

to αc, which is due to a possible increase from nb to nf, but mostly to the substitution of the line 

shaft approximation by the worst case D/ah, provided there is a boring at the center of the pier.  

Equation 5-1 is used instead of α in Equation 3-9 to find CVR and, subsequently, Φ for the 

presence of a boring in the footprint of a (single or multiple shaft) foundation when the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-4.  Functions αb

1/2 (dashed) and αc
1/2 (thin continuous) from Equations 4-1 and 5-2, 

respectively.  Thick continuous line is α0. 
 



 

 - 85 -

horizontal range is unknown.  In the presence of more than one layer αc from Equation 5-1 with 

respective layer thicknesses as L is used instead of αLj for each layer in Equation 3-13.  If the 

vertical variogram is nested, Equation 3-8 may be used to find a respective value of α0 to be used 

in Equation 5-1 or, alternatively, αc from Equation 5-1 is used in Equation 3-8 to obtain a final 

variance reduction factor.   

Since the worst case scenario occurs when Cov(m,q) is still zero or very small, the best 

estimate of nominal strength for pier design for this scenario is given by the mean strength over 

all borings in the sub-domain.  However, although αc would be more favorable, the true (but 

unknown) ah may be large enough to lead to a best estimate of nominal strength at a pier, which 

is equal to the mean strength measured at the respective center boring.  Hence, in analogy to 

Chapter 4 (when pier location are already known), it is conservative to use αc from Equation 5-2 

with a nominal strength equal to the lower value between the mean strength at the center boring 

and the mean strength over all borings in the sub-domain. 

5.2  Knowing the Horizontal Correlation Length 

For completeness, this section briefly discusses the rather theoretical situation of a known 

horizontal correlation length ah at a pier location or over a whole sub-domain.  In order to infer a 

reliable value of ah, a sufficient amount of borings (say > 4) need to be located at sufficiently 

small separation distances (say between 3 to 20 ft), which is not expected to occur in general 

design practice (17th Street data are rather an exception for investigation purposes).  However, 

assuming that ah is known, then Figures 5-1, 5-2, and 5-3 are directly applicable to obtain αc and 

to continue design as discussed in the previous section (above figures are even emendable to 

being plugged into the 3rd quadrant of Figure 3-16, for example).  Direct use of Figures 5-1, 5-2, 

and 5-3, however, does not account for the presence of additional data from other borings than 
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the center boring at a pier location in question.  That is, not all the information available is used, 

such that αc may be larger than from Equation 5.1, where nf is considered.  In order to obtain a 

consistent estimate of variance reduction and nominal load for known ah, while accounting for all 

borings available (and particularly borings close to the pier location in question), a full kriging 

approach must be taken (see Section 2.4).  That is, data in each boring will receive different 

weights for estimating nominal resistance as a function of their distances to the shaft and among 

each other, and αc will be a function of these weights. 

5.3  Case Study – 17th Street Bridge 

In the example of Section 4.3.1, the pier location was not yet defined and m = 16.1 tsf was 

assumed to be the nominal unit side friction based on a limited amount of data from 6 borings. 

The present section continues this case study by assuming that a (single or multiple shaft) foun-

dation is located at a particular boring location (where horizontal correlation between borings is 

again ignored, as in practice borings will be further apart, anyway).  Figure 5-4 may be directly 

plugged into the quadrant chart of Figure 3-16 (3rd quadrant), which is depicted in Figure 5-5.  

Assuming that the foundation is located at a boring with a mean strength larger than m = 16.1 tsf 

for the whole site (see Figure 2-9(a)) and as discussed above; the nominal unit side friction is 

conservatively adopted as m.  An example for locating the foundation at a boring of mean 

strength below m is given below for comparison.  Maintaining the vertical correlation length av = 

5 ft, coefficient of variation in local strength CVq = 0.53, design load Qdes = 2500 tons, shaft 

diameter D = 4 ft, and reliability index β = 3, Figure 5-5 shows the respective graphical iteration 

process (i.e., starting from L/av = 6, or L = 30 ft as discussed in more detail in Chapters 3 and 4) 

using nf = 6. Design values obtained are a shaft length L = 15 ft (L/av = 3.0) and Φ = 0.78, which 

compares to L = 21 ft and Φ = 0.60 from Section 4.3.1 without a boring in the footprint.  
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Figure 5-5.  Quadrant chart with Figure 5-4 in 3rd quadrant and graphical design iteration 

for nominal unit side friction of m = 16.1 tsf. 
 
 

If a pier is located at a boring location where the mean strength at the borehole is less than 

the site average m = 16.1 tsf, then it is conservative to use the mean strength value of that 

particular boring for design.  If the same nominal value m = 16.1 tsf was used for the whole site, 

then the target probability of failure would be met on average over the whole site.  However, 

given the information from the center borings at production shaft locations, individual probabil-

ities of failure would be larger and smaller than the target value.  A shaft at a borehole indicating 

low strength would have a probability of failure above the target value, which also leads to a 

higher probability of failure for the whole bridge, especially when failure of the whole bridge 
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may be caused by failure of a single pier.  Assuming, for example, that a foundation is located at 

the top boring in Figure 2-9(a), the nominal design unit side friction would be 11.8 tsf leading to 

Qdes/(Davm) = 10.59, with all other parameters from above.  Figure 5-6 shows the respective 

iteration process resulting in L = 20 ft (L/av = 4) and Φ = 0.82.  As expected, it is seen that the 

smaller unit skin friction used leads to larger shaft dimensions.  However Φ also increases, which 

may be somehow counterintuitive at first, but may be explained by the larger degree of spatial 

averaging over the necessarily larger shaft (compare discussion immediately after Figure 3-16).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-6.  Quadrant chart with Figure 5-4 in 3rd quadrant and graphical design iteration 

for nominal unit side friction of 11.8 tsf. 
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This indicates that Φ, being a function of shaft dimensions in the present approach, loses its 

direct relationship with probability of failure/reliability and, as a consequence, appears to be 

reduced to an auxiliary variable equal to Qdes/Rn, whose increase or decrease is no longer strictly 

related to an increase or decrease in probability of failure when comparing shafts of different 

dimensions.  The meaning of Φ as a direct link to probability of failure remains valid only when 

comparing shafts of equal dimensions. 
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CHAPTER 6 
DEVELOPMENT OF LRFD Φ AS A FUNCTION OF  

SPATIAL VARIABILITY AND LOAD TESTING 
 

6.1  AASHTO’s LRFD Bias Factor λR 

In the previous chapters, uncertainty in shaft (foundation) resistance was considered due to 

spatial variability in local strength q over the shaft surface, as well as between typically limited 

available data and the shaft surface.  LRFD Φ values were obtained by assuming log-normal load 

and resistance distributions with Equation 3-22 containing the resistance bias factor λR as propor-

tionality constant.  Factor λR is defined as the average ratio of (load test) measured over 

(borehole) predicted resistances and its value is determined from a large amount of historic data 

from many sites.  The use of λR in Equation 3-22, hence implies the assumption that borehole 

data consistently under- or over-estimate hypothetical production shaft (i.e., load test) resistances 

by a factor λR.  If such a unique proportionality constant between borehole and load test 

resistances exists, and if it may be reliably determined, then the approach of the previous 

chapters is fully valid (see remarks in Section 6.7.4). 

However, these conditions may not be met in general practice due to spatial variability 

within sites and variable conditions between sites.  To overcome this, the present chapter lays out 

a concept for site specific bias correction based on site specific borehole and load test data. 

Instead of a simple proportionality constant, the approach uses linear regression (i.e., straight line 

fit through cloud of data points) to describe the relationship between load test resistances and 

borehole predicted resistances in the respective footprints of the load tests.  This site specific 

relationship is then used to estimate production shaft resistances and uncertainties from borehole 

data at production shaft locations.  Thus, for each particular site, the method accounts for spatial 

uncertainty between borehole data and shaft surface; systematic and random errors in the 
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borehole prediction method; and the amount of spatial averaging in the horizontal and vertical 

directions on the shaft surface.  While the following sections give a detailed description of the 

theoretical approach, a practical case study from a site where borehole data are available in the 

footprints of load tests (Jewfish Creek) concludes the chapter. 

6.2  Linear Regression between Borehole and Load Test Data 

In order to establish a reliable relationship between borehole predicted and load test 

measured resistances for a given site, core samples must be taken at the center of every load test 

location prior to actual load testing (Figure 6-1).  Core samples are analyzed in the laboratory 

(e.g., qu, qt) to estimate local skin friction values qBi by the selected method, while load test 

shafts are equipped with strain gages allowing for measuring contributions to total shaft 

resistance from a number of vertical shaft intervals.  By knowing the surface area of each shaft 

interval, these resistance components may then be transformed into load test measured local (i.e., 

averaged over respective shaft interval) strengths qLi.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-1.  Example of core samples taken from borehole in center of subsequent load test.  
Core samples are analyzed in laboratory to predict local strengths and load test possesses 

strain gages to measure local strengths (unit side friction) over vertical shaft intervals. 



 

 - 92 -

Figure 6-2 depicts a scatterplot of qLi against qBi where the red line represents the linear 

regression fit to the data, i.e., the red line is a best fit to the data points in the sense that the sum 

of the vertical squared differences between the data points and the regression line is a minimum. 

The regression line is defined by the equation 

ε++= BiLi bqaq  (6-1) 

where a and b are deterministic coefficients representing intercept and slope of the regression 

line, respectively, and ε is a random residual of mean zero and minimized variance σ2
ε.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-2.  Data points of measured versus predicted strengths with linear regression line 

(red) and linear regression parameters. 
 
 

Coefficients a and b may be interpreted as parameters accounting for systematic prediction 

bias (e.g., consistent over- or under-estimation) and a larger degree of spatial averaging over the 

shaft intervals than over core samples.  Residual ε, in turn, is a random prediction error which 

includes spatial variability between borehole and shaft surface as well as random measurement 

errors, irregularities in test shaft surface, etc.  From linear regression theory, it is known that 



 

 - 93 -

BiLi bmma −=  (6-2) 

Bi

Li
irb
σ
σ

=  (6-3) 

where mLi, σLi, and mBi, σBi are the respective means and standard deviations of load test and 

borehole data, and ri is the correlation coefficient between them.  The term r2
i is often written as 

R2 and called coefficient of determination.  It expresses the portion of variability in qLi (i.e., the 

portion of σ2
Li), which is explained by the regression model.  The portion of σ2

Li not explained 

by the regression model is equal to the variance σ2
ε of the random residual and given by 

( )222 1 RLi −= σσε  (6-4) 

For example, R2 = 1 would mean perfect correlation between qLi and qBi such that all data points 

fall exactly onto the regression line and σ2
ε = 0, indicating the qBi is a good estimator of qLi.  On 

the other hand, R2 = 0 corresponds to zero correlation and zero predictive power of qBi on qLi, 

such that σ2
ε = σ2

Li, i.e., information in terms of qBi does not improve estimation of qLi.  Regres-

sion model fits, as shown in Figure 6-2, are available as a standard function in Microsoft Excel, 

for example, which directly inform resulting values of a, b, and R2 for a given data set. 

6.3  Upscaling from Shaft Intervals to Whole Shafts 

Since it is the resistance of entire shafts that is of interest rather than vertical intervals 

thereof, the obtained regression relationship needs to be upscaled.  Borehole and load test data 

indexed by the letter “i” emphasize that respective values are defined on a support equal to the 

size of the shaft intervals.  Assuming that borehole strength is a good predictor of shaft resistance 

(i.e., ri close to one or σ2
ε/σ2

Li << 1), and based on the fact that core samples and load tests 

measure the same physical parameter, the vertical range av from borehole data (inferred from all 

borings in a sub-domain, not just at load test locations) can be applied to load test data (which 
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typically is too sparse for variogram analysis).  Possible nugget components in the vertical vario-

gram may be due to portions of σ2
ε, which are not due to spatial variability such as instrumenta-

tion errors or similar.  However, it is again conservative to fit a variogram through the origin, 

which is equivalent to attributing spatial correlation range av to these errors for conservative 

variance reduction.  Assuming that load test intervals are of approximately the same length as 

borehole sample spacing, spatial averaging in the vertical direction is then the same for borehole 

and load test data resulting in the upscaled load test and borehole variances, i.e., σ2
L = α0σ2

Li and 

σ2
B = α0σ2

Bi, respectively.  The term α0 is the variance reduction factor for a vertical line of test 

shaft length L (line shaft approximation) and may be found from Figure 3-2 (thick continuous 

line) or Appendix B, for example.  For the common case of L/av ≥ 1 and a spherical variogram 

20
2.075.0

⎟
⎠
⎞⎜

⎝
⎛

−
⎟
⎠
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⎝
⎛

=

vv a
La

L
α  (6-5) 

is a simple way of finding α0.  Note, however, that α0 is only applicable to the variance contained 

in the vertical direction and needs to be used in Equation 3-8 in the presence of a random areal 

trend (i.e., variability contained in horizontal direction only).  In this case, sv < 1, and instead of 

α0 from above, a variance reduction factor of α0sv + (1 – sv) is to be applied (see Section 3.6.1 

17th Street Bridge example), where sv is the sill of the variogram normalized to unit total variance 

(i.e., the portion of variance in σ2 contained in the vertical direction).  If the distance between 

center boring and shaft surface is not too large, however, (typically < 5 ft) such that the range of 

a random areal trend component may be assumed much larger, then it is still safe to use Equation 

6-5 directly.  In this case, the random areal trend component does not become effective over the 

short distance between boring and shaft. 
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After all, load test and borehole variances are both scaled by a factor (say α0 in the sequel) 

being equivalent to a horizontal and vertical scaling of each data point by a factor α0
1/2 towards 

the respective mean values mL = mLi and mB = mBi, which remain the same after upscaling 

(Figure 6-3).  As a consequence, the correlation coefficient is not affected by upscaling either, 

i.e., r = ri, such that a, b, and R2 in Equations 6-2, 6-3, and 6-4 are directly applicable to the 

upscaled regression model.  Equation 6-4 further shows that σ2
ε becomes α0σ2

ε after upscaling as 

σ2
L = α0σ2

Li was found above.  Consequently, Equation 6-1 after upscaling to shaft size may be 

written as 

εα0++= BL bqaq  (6-6) 

where qL is the mean unit side friction over the shaft surface of length L and qB is the estimate of 

mean strength from a boring inside a shaft’s footprint. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-3.  Shaft interval related data of Figure 6-2 (left) upscaled to whole shaft size 
(right) with respective regression parameters. 

 
 

Equation 6-6 is a random equation with deterministic constants a, b, and α0 and random 

variables qL, qB, and ε.  Taking the expectation (mean) of both sides of the equation leads to the 

equation of the regression line 

BL bmam ** +=  (6-7) 
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since ε is an error component of zero mean (i.e., after bias correction, the average error is zero).  

The term m*B represents the predicted mean borehole strength over a depth L, which is 

converted by Equation 6-7 into an expected (nominal) unit side friction m*L over a (production) 

shaft surface corrected for prediction bias and horizontal variance reduction.  By subtracting 

Equation 6-7 from Equation 6-6, one obtains the residuals, which after squaring and taking the 

expectation (as shown in the bottom of Appendix B), the equation for the variances results. 

2
0

222 ** εσασσ += BL b  (6-8) 

Here, σ*2
L is the expected (bias corrected) variance of m*L, while σ*2

B is the prediction 

uncertainty about m*B.  The square root of Equation 6-8 divided by Equation 6-7, results in the 

bias corrected coefficient of variation CVR of shaft resistance 

B

B

L

L
R bma

b
m

CV
*

*
*
* 2

0
22

+
+

== εσασσ  (6-9) 

With this and a given reliability index β, a value of LRFD Φu may be found from Figure 6-4, 

which is based on Equation 3-22 with unit resistance bias factor, i.e., λR = 1. 

In other words, the classic LRFD design equation Qdes = ΦRn is reformulated as Qdes = 

Φum*LAs (As being the lateral shaft surface area) as bias correction is now contained in m*L and 

no longer in Φ.  A design unit side friction can thus be defined as fdes = Φum*L.  A graphical 

comparison between the classic and present bias correction approach is presented in Figure 6-5 

showing that λR is simply a proportionality constant (slopes of blue lines) between load test 

measured and borehole predicted strengths, while the regression line (red) parameters a and b 

provide more flexibility to fit the general tendency of the data points.  Horizontal averaging over 

test shafts, for example, tends to decrease the variance in σ2
L with respect to σ2

B, leading to a > 0 

(larger stretching of the data cloud along x-axis than along y-axis). This would result in generally 
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Figure 6-4.  LRFD resistance factor Φu as a function of resistance coefficient of variation 
CVR and reliability index β for unit resistance bias factor λR = 1 (Equation 3-22).   

Variable Φ from Figure 3-15 is equal to 1.06Φu from this figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-5.  Comparison of classic (blue lines) and present (red line) approach  
for bias correction. 
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6.4  Design without Center Boring 

In the same way as in Chapter 4, it is assumed here that nb borings with core sample data 

are available from a site (or sub-domain if previously divided).  The data resolution of the first 3 

to 4 borings must be sufficient to construct a vertical variogram (i.e., sample spacing smaller 

than vertical range av), while the remaining borings may be sampled at a separation not larger 

than av.  Next, load testing with a shaft of dimensions similar to a future production shaft is 

performed at locations within the zone or region for which the borings were sampled and a 

variogram was established.  Note, a sample boring is also performed in the footprint of the load 

test or tests from which the resulting parameters a, b, and σ2
ε from Equations 6-2, 6-3, and 6-4 

may be determined.  

For a yet unknown production shaft location (or a known location without center boring), 

the best predictor of design unit skin friction m*B is the mean borehole strength m of all nb 

borings with a variance σ*2
B = σ2

m given by Equation 3-9 using a variance reduction factor α 

from Equation 4-1.  Note that Equation 3-8 needs to be considered as well in the presence of a 

nested variogram, e.g., random areal trend such that 

2
0

2 11* σασ ⎟⎟
⎠

⎞
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⎝

⎛
+=

b
B n

 (6-10) 

where α0 corresponds to averaging along a vertical line of shaft length L (including possible 

random areal trend), and σ2 is the total variance in local strength data from all borings.  With this 

and Equation 6-7, all the parameters in Equation 6-9 are defined to determine CVR and, subse-

quently, Φu (Figure 6-4) and fdes = Φum*L. 
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6.5  Design with Boring in Footprint of Production Shaft 

As opposed to the previous section, where production shaft location is unknown, the 

present section considers the scenario of Chapter 5, where borehole data are available inside the 

footprint of a production shaft.  In this case, the best predictor m*B of shaft unit side friction is 

the mean mB of the strength data from the boring in the footprint.  As mB is actually an observed 

value in the design foundation footprint, its variance is zero leading to σ*2
B = 0.  With this, 

Equation 6-9 reduces to 

B
R bma

CV
*

2
0

+
= εσα

 (6-11) 

which is independent of nb and always smaller than CVR from Equation 6-9 with σ*2
B > 0.  The 

expected (nominal) unit side friction m*L over a (production) is again found from Equation 6-7. 

Important to notice is that in order for the regression model from load tests to be applicable to 

production shafts, the borehole sampling and test shaft configurations (i.e., borehole sample 

density and shaft diameter) need to be similar to the conditions at the production shaft.  In 

general, it may be stated that the larger the correlation is between borehole and respective load 

test data, the smaller will be CVR and the larger Φ (for constant shaft dimensions). 

6.6  Design without Load Testing 

As identified earlier, in order to construct the linear regression model instead of AASHTO 

bias λR, a minimum number of load test and borehole data is required.  Due to costs, generally 

the limiting factor in practice is the number of load tests performed.  However, linear regression 

theory provides relationships for the uncertainty of the parameters obtained as a function of the 

number ni of data pairs available (i.e., the number of load test intervals with corresponding 
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borehole data).  For example, the variances of the parameters a and b (e.g., Equation 6-6) are 

known to be 

( )2222
BiBiba m+= σσσ  (6-12) 

Bii

b
n 2

2
2

σ
σσ ε=  (6-13) 

such that a possible criterion for a minimum number of load test intervals may be that the 

coefficient of variation CVb = σb/b be smaller than a certain threshold (e.g., 10%).  It is expected 

from Equation 6-13 that 10 to 15 pairs of estimated and measured unit skin friction be sufficient 

to establish reliable regression coefficients (i.e., a and b).  In addition, borehole data should be 

available prior to any load testing in order to assist in defining load test locations, such that load 

tests are performed over a wide range of strength conditions (e.g., one load test at a boring 

indicating weak rock and another load test at a boring indication strong rock).  This should help 

in constructing a regression model, which is representative of all possible conditions at a site. 

It may be of interest not to perform any load testing at a site (e.g., small bridge), but still 

use the linear regression bias approach of Equation 6-6.  For such situations, conservative values 

of a, b, and σ2
ε need to be defined, which can only be improved upon by actual load testing and 

regression analysis.  Figure 6-6 illustrates this conceptual idea by showing a series of possible 

outcomes of bias regression relationships (black lines) inferred from load testing at many sites 

and a most conservative regression line (red dashed), which should be adopted if no load testing 

is done.  From Equation 6-7, it is seen that a = 0 and some value of b < 1 would be conservative 

(e.g., b = 0.75), such that a conservative version of Equation 6-7 could be 

BL mm *75.0* =  (6-14) 
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where m*B = m for no center boring (or unknown shaft location) and which would be equivalent 

to adopting λR = 0.75 in the classic bias approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-6.  Possible outcomes of regression lines for load testing at many sites (black lines) 

and conceptual example of conservative regression line (red dashed),  
if no load testing is performed. 

 
 

In Equation 6-8, however, it is conservative to not use a small value of b, i.e., b = 1, and 

some conservative value of σ2
ε needs to be found as well.  Similar with the selection of a and b, a 

value of σ2
ε = 0.2σ2 (i.e., 20% of local strength variance) may be used for illustration, noting that 

the numerical values are subject to future modification and validation as load tests with collo-

cated boring results become available.  It should be noted that while σ2
ε consists of a component 

due to spatial variability between boring and shaft (see Chapter 5), it also includes some random 

measurement error component, as well as precision issues related to core sample strength testing 

which must be considered in giving a sound theoretical basis to a most conservative value of σ2
ε.  

With the example numbers, a conservative version of Equation 6-8 would be 
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where Equation 6-10 was used.  Equation 6-14 and 6-15 may be combined to express CVR in 

analogy to Equation 6-9, which simplifies to 

qqR CVCVCV 00 246.1 αα ≈≈  (6-16) 

for large nb (say > 20).  For the conservative example values chosen, Equation 6-16 indicates that 

the penalty for no load tests results in a CVR of 46% larger than the line shaft approximation 

(Chapter 3) which corresponds approximately to doubling the respective variance reduction 

factor (right hand side of Equation 6-16). 

In case borehole data are available in the production shaft footprint, σ*2
B is again zero and 

Equation 6-15 becomes 

2
0

2 2.0* σασ =L  (6-17) 

Equation 6-14 is not affected other than that m*B = mB, i.e., the mean strength at the boring in 

the shaft footprint only.  The resulting CVR  ( σL
*2/ m*L)  leads to 

BB
R mm

CV σασα
3

60.0 0
0 ≈≈  (6-18) 

which for mB ≈ m indicates a significant reduction in CVR with respect to Equation 6-16 and also 

shows that CVR increases as mB decreases, i.e., as the mean local strength at a boring becomes 

smaller (provided that shaft dimensions and, hence, α0 are kept constant). 

6.7  Case Study – Jewfish Creek 

6.7.1  Regression Analysis 

Among data from several sites (Victory, Apalachicola-SR20, MIC People Mover, etc.) 

with load testing analyzed, Jewfish Creek was the only site with borehole data inside the load 

test footprints and at depths commensurate with load test instrumentation.  For instance, Victory 

and Apalachicola-SR20 Bridges had data in the footprint of load tests, but at depths greater than 
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the tip of the shafts.  A summary of the borehole data from Piers 1 through 38 from Jewfish 

Creek is contained in Appendix C resulting in the histogram and vertical variogram of Figure 

6-7.  The vertical variogram, however, may not be considered reliable, since vertical data spacing 

is too large (> 5 ft) and a few extreme data values dominate Figure 6-7(b).  It will be used in the 

sequel with a vertical range av ≈ 15 ft for illustration purposes only.  Note further that no 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-7.  Jewfish Creek data (Appendix C):  (a) Histogram with summary statistics; and 
(b) Vertical variogram.  Note that the vertical variogram is not considered to be reliably 

inferred and is only used for illustrational purposes in the sequel. 
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recovery data was available for the borings in the footprints of the load tests.  As a consequence, 

the regression model below is built with predicted borehole strengths that are not corrected for 

recovery and is only to be used with borehole prediction data which is not corrected for recovery 

either.  If recovery data were available for borehole strength correction, it is expected that strength 

prediction would improve (i.e., different coefficients a and b, and smaller 2
εσ ).  In theory, any 

parameter may be used as a predictor for unit load test side friction, however, its predictive power 

may be zero (i.e., b = 0 and large 2
εσ ) and the upscaling of the regression model would become 

questionable (high 2
εσ  - low CVR and Φ). 

Shown in Figure 6-8 are the tabular reported unit skin frictions from statnamic load tests TS-1 

and TS-2 at Jewfish Creek (shaft lengths L = 30 ft, diameters D = 48 and 60 in with strain gage 

intervals of 5 – 10 ft).  Applied Foundation Testing, the company who conducted the testing, 

recommend in their report that the first values (51 and 32.2 ksf) in the tables be neglected due to 

construction issues (i.e., casing lip resulting in end bearing effects); also the last one or two 

values were neglected due to small axial displacements, i.e., failure to mobilize the ultimate skin 

friction.  The remaining data are used herein, marked by red boxes and summarized in Figure 

6-9(a) together with the corresponding local strength values from collocated core sample 

analysis, i.e., q = 0.5(quqt)1/2.  Note that Figure 6-9(a) indicates a general tendency of the 

borehole data to over-estimate load test unit side friction (mLi = 17.4 < mBi = 21.1 ksf).  It may be 

further observed that both load tests were performed in areas of stronger ground than the site 

average (mBi = 21.1 > m = 18.0 ksf).  The 6 data pairs are plotted in Figure 6-9(b) (red dots) to 

which a linear regression line is fitted (black line) resulting in parameters a = 1.55, b = 0.75 (CVb 

= 0.23 from Equation 6-13) and R2 = 0.77.  These parameters define a (partially) random 

relationship between borehole and load test data, which is illustrated by the cloud of grey dots  
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Figure 6-8.  Measured unit side friction from load tests over various intervals:  (a) TS-1; 
and (b) TS-2.  Red boxes indicate data used for regression model. 

(b) 

(a) 
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Depth interval TS, qLi Boring, qBi

(ft) (ft) (ksf) (ksf)
‐15.3 ‐20.8 32 37.5
‐20.8 ‐26.2 16.8 14.3
‐26.2 ‐32 12.2 19.5
‐18.5 ‐29 18.2 16.8
‐18.5 ‐29 18.2 27
‐29 ‐39.1 7.2 11.3

Mean: 17.4 21.1
Variance: 69.2 93.8

      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-9.  Data used from tests at Jewfish Creek:  (a) Load test versus boring strengths; 

and (b) Regression model. 
 
 
(i.e., the regression line of all grey dots is also equal to the black line with same R2 ).  From 

Equation 6-4, σ2
ε = 15.9 ksf2 where σ2

Li = 69.2 ksf2 from Figure 6-9(a).  From Figure 3-2 (thick 

continuous line) or Equation B-5 (Appendix B) av = 15 ft from above, results in α0 = 0.33 as the 

last parameter required for design. 

 
6.7.2  Design without Boring in Footprint 

According to Section 6.4 (and using parameters from Figure 6-7(a)), it is assumed that an 

exact production shaft location is not yet defined (or at a location where no borehole data are 

available) such that m*B = m = 18.0 ksf and σ*2
B = 33.0 ksf2 from Equation 6-10 (with large nb ≈ 

20).  Equation 6-7 further gives m*L = 15.1 ksf with CVR = 0.32 from Equation 6-9 (symbolized 

(a) 

Red dots are data from (a) and black line is regression line with 
parameters a = 1.55, b = 0.75 and R2 = 0.77. Small grey dots are many 
possible outcomes of this regression model. Blue sling brace symbol‐
izes uncertainty in production shaft unit side friction when center 
boring is present (no uncertainty on x‐axis). Green sling brace 
symbolizes increased uncertainty in production shaft unit side friction 
when center boring is not present (green ellipse symbolizes uncer‐
tainty on x‐axis, i.e., in borehole data at production shaft location). 

(b) 
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in green in Figure 6-9(b)) resulting in Φu = 0.47 from Figure 6-4 and a design unit side friction 

fdes = Φum*L = 7.1 ksf.  If no load test data are available, i.e., a, b, and σ2
ε are not known for the 

particular site and the exemplary conservative values given above are adopted, then m*B = m as 

before, however, CVR = 0.45 from Equation 6-16 and Φu = 0.32 from Figure 6-4.  Term m*L = 

13.5 ksf from Equation 6-14 leading to fdes = 4.3 ksf, which is smaller than 7.1 ksf for the 

presence of load testing.  For comparison, if a value λR = 0.8 is adopted as the mean ratio of 

qLi/qBi from Figure 6-9(a) with CVR = α0
1/2CVq = 0.32 (Equation 3-9) giving Φu = 0.47 (Figure 

6-4), then Φ = λRΦu = 0.38 and fdes = Φm = 6.8 ksf. 

 
6.7.3  Boring in Production Shaft Footprint 

According to Section 6.5, it is now assumed a production shaft is located at one of the 

previously sampled borings.  Term m*B in this case is equal to the mean strength mB at the 

boring in question and σ*B = 0.  Assuming mB = m in a first example, m*L = 15.1 ksf as above 

with CVR = 0.15 from Equation 6-11.  Figure 6-4 indicates Φu = 0.74 giving fdes = 11.2 ksf.  For 

other hypothetical values of mB = 15.5 and 20.3 ksf, respective values of fdes would be 9.2 and 

12.6 ksf.  In the absence of load testing, and adopting the examples of conservative regression 

parameters suggested above, CVR = 0.18 from Equation 6-18 giving Φu = 0.68 from Figure 6-4 

and values of fdes = 9.2, 7.2, and 10.7 ksf for mB = 18.0, 15.5, and 20.3 ksf, respectively.  These 

values of fdes are consistently smaller than for comparable cases (i.e., equal mB) in combination 

with a regression model inferred from load test data. 

 
6.7.4  Remarks 

Values of fdes given above are strictly valid only for a production shaft diameter equal to 

the test shaft diameters.  The same applies to shaft length, however, by adjusting the value of α0 

to production shaft length, production shaft length may differ from test shaft length.  The 
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parameters of the upscaled regression model are theoretically not affected by different produc-

tion and test shaft lengths.  Evaluation of the possibility to extend the approach to multiple shaft 

foundations and situations where more than a single boring may be available in test and produc-

tion shafts should also be considered.  The same applies to a reliable definition of conservative 

(worst case) parameters of the regression model in the absence of load testing, where theoretical 

(geostatistical) considerations and upcoming field data from load tests with collocated boring 

data are combined.  For practical implementation, it is again convenient to find a required shaft 

length, for example, from a given design load, which is the inverse calculation as performed 

above.  The adoption of a procedure similar to the graphical quadrant chart iteration introduced 

in Chapter 3 appears viable and should be investigated as well.  In general, it may be noted that 

results of previous chapters are consistent with the approach of the present chapter if the 

regression model m*L = a + bm*B and σ*2
L = b2σ*2

B + α0σ2
ε from Equation 6-7 and 6-8 is 

reduced to m*L = λRm*B and σ*2
L = λR

2σ*2
B, i.e., a = σ2

ε = 0 and b = λR. 
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CHAPTER 7 
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

7.1  Current Practice and Scope of Work 

During the past five to ten years, the FDOT, as well as other DOTs and the FHWA, have 

moved away from allowable stress design (ASD) to load and resistance factored design (LRFD) 

based on probability for deep foundation design.  For example, using their extensive database of 

load tests with adjacent borings/laboratory tests within Florida, the FDOT established LRFD 

resistance factors Φ based on assumed reliability (Figure 7-1).  The LRFD resistance factors Φ 

for drilled shafts founded in Florida limestone were established for reliability of 2.5 to 3.0 and an 

expected pile/shaft coefficient of variation (CVR) of 0.25 to 0.30.  In addition, all limestone is 

generally treated as uniform and constant over a site, i.e., it is not broken into zones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-1.  Table 3.5 of the FDOT Structural Design Manual for drilled shafts in limestone. 
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Unfortunately, typical rock strengths (unconfined and split tension) vary from site to site 

resulting in a range of coefficient of variation of rock strengths CVq throughout Florida.  

Reducing the expected variation in axial shaft resistance CVR over the measured rock strength 

variability CVq, is the summation (i.e., mean or average) of rock strengths over the surface area 

of the shaft.  Obviously, the length of shaft (e.g., L= 10 ft versus 30 ft) significantly affects the 

averaging process and the computed CVR, which directly impacts the resulting LRFD Φ.   

Moreover, any rock strength which is correlated spatially as shown in Figure 7-2 (i.e., red→ 

yellow→green→blue indicating the range of strong-to-weak rock) may be represented by a 

spatial covariance function and correlation length and will result in less averaging and larger 

shaft variability CVR, leading to smaller LRFD Φ.  Also contributing to the uncertainty in 

addition to CVR, are the number and locations of borings.  Chapters 3 to 5 address all the issues 

related to estimating CVR and the ensuing LRFD Φ for various boring scenarios, i.e., number of 

borings; location of borings relative to each other; and with respect to the design shaft through 

the principles of geostatistics which cumulate in a number of design charts.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-2.  Variation of rock strength at 17th Street Bridge. 
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For this work, it was assumed that the relationship between the measured shaft resistance 

(e.g., skin and tip) and the borehole’s estimate of resistance, based on insitu/laboratory properties 

(strength and modulus), is a known proportionality constant, i.e., bias (λR) (e.g., AASHTO’s λR 

= 1.06).  To address the issue of the uncertainty of the design method, as well as the use of load 

testing, Chapter 6 redevelops the relationships between measured load shaft variance σ2
L and 

borehole predicted resistance variance σ2
B plus a variance of a random residual σ2

ε, which 

accounts for uncertainty in the shaft construction and the design methodology.  A summary of 

the work follows.  

7.2  Use of Geostatistics to Assess Shaft Resistance from Borehole Data 

One of the major findings of this research is that typical Florida limestone has various 

levels of correlation in both the vertical and horizontal direction (e.g., 17th Street, Fuller Warren, 

and Jewfish Creek Bridges).  Correlation may be established from a semi-variogram (frequently 

abbreviated to variogram) γ(h), which may be assessed from strength data at multiple different 

distances (h) as 

 
( )∑ −=

hn
ji

h

qq
n

h 2

2
1)(γ  (7-1) 

That γ(h) is equal to half of the mean squared difference of nh data pairs (qi, qj) separated by a 

distance h.  The variogram is related to the spatial covariance function C(h) by 

 )()( 2 hCh −= σγ  (7-2) 

where σ2 represents the variance of the local strength data.  Since the covariance function C(h) 

reaches zero at a distance a, the variogram will start small (e.g., 0) and rise exponentially or 

spherically, until the variance σ2 is reached at a spacing of a.  The correlation length a may be 

different in the vertical av, from the horizontal ah, direction (e.g., 17th Street Bridge av = 5 ft, and 
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ah = 12 ft).  The vertical correlation av may be established readily from all borehole data which 

are considered similar.  For instance, each of the six borings near Pier 10 at 17th Street Bridge 

had similar means and variance over the full depth and was consequently considered as a 

statistically homogeneous zone or region.  In the case of Fuller Warren Bridge (Chapter 2), the 

differences in mean and variance were quite large over the depth.  Subsequently breaking the 

depth into layers, the variance of each layer was greatly reduced, which resulted in a lower 

coefficient of variation CVq of each layer and the ensuing CVR of the whole shaft.   Further 

discussion on anisotropy (zonal & geometric) is given in Chapter 2. 

Having established the summary statistics (CVq) as well as the relationship between point-

to-point strength or modulus values C(h) as a function of correlation length a, the work focused 

on assessing the nominal shaft resistance Rn and its corresponding variability CVR.  Since the 

total side friction on a shaft is obtained from the average point-to-point rock strength (e.g., 

½sqrt(quqt)), the ratio of the variance of the shaft resistance σs
2 to the rock σ2 is given by 

(Equation 3-4),  

 ∫ ∫==
s sA As

s AdAhC
A 2122

2

)('1
σ
σα  (7-3) 

where C′(h) is the normalized covariance, i.e., C′(h) = C(h)/σ2.  Next, due to the simple linear 

relationship of the arithmetic averaging process for side friction, the mean rock strength (m) for 

all the borings will be the same as the mean shaft resistance (ms).  Consequently, the coefficient 

of variation of the shaft resistance (CVR) is given by Equation 3-9 or  

 

  (7-4) qR CV
m

CV αασ
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Equation 7-3 was subsequently used to evaluate α for different assumptions on the covariance 

(e.g., spherical and exponential).  For example, for a single shaft (solutions given for double, 

triple, and quadruple in Chapter 3) with an exponential covariance, α was given in Figure 3-2 

and shown in Figure 7-3.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-3.  Integration α1/2 = σs/σ as a function of L/av and D/ah for single shafts. 
 
 

A number of important observations are evident from Figure 7-3.  Firstly, the existence of 

large correlation lengths av or ah, relative to shaft length and diameter, result in large α1/2 which 

result in larger CVR and result in lower LRFD Φ.  Secondly, assuming that the diameter of the 

shaft is small compared to a potentially unknown horizontal correlation length (ah,) always 

results in a conservative estimate of CVR. 

Using AASHTO’s First Order Second Moment Approach (i.e., assumed log-normal 

resistance and loads) with an assumed bias λR of 1.06, the LRFD Φ may be established (Figure 
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3-15).  However in order to assess Φ for a given site, the physical dimensions of the shaft 

parameter are required based on a given design load.  In an effort to find a practitioner-friendly 

solution to this problem, a graphical iteration method was developed in Chapter 3 based on the 

“quadrant chart” approach (see Figure 3-16, displayed in Figure 7-4).  Four individual charts are 

arranged in a way that they share their axes with two neighboring charts such that when one 

chart is left at one axis, the respective neighboring chart is automatically entered.  By prescribing 

a value for D, each chart possesses a series of curves whose parameters are known.  The purpose 

of this is to perform a graphical iteration process to find L (starting from a guessed initial value) 

by “looping” through the quadrant chart in counter-clockwise direction.  Each individual 

quadrant of the chart represents a fundamental relationship of the design process.  Starting in the 

top-right corner and going counter-clockwise these relationships are: 

• 1st quadrant:  Φ = f(CVR) where β is a known parameter; 

• 2nd quadrant:  L/av = f(Φ) using the LRFD design equation Qdes = RnΦ = DLπmΦ 

where Qdes/(Davm) is a known parameter; 

• 3rd quadrant:  α1/2 = f(L/av) where D/ah is a known parameter; and 

• 4th quadrant:  CVR = f(α1/2) where CVq is a known parameter. 

 
While Figure 3-16 contains Figure 3-2(a) (variance reduction chart for single shafts) in the 3rd 

quadrant and, as a consequence, is limited to the design of single shaft foundations, substitution 

of the other multiple shaft configurations (double or quadruple) into the 3rd quadrant of Figure 

7-4 results in respective quadrant design charts for triple or quadruple shafts.  This type of 

quadrant chart is, thus, directly applicable to single and multiple shaft foundations within a single 

layer and neglecting end bearing with the only restriction that Equation 3-8 must be applied in 

the transition from the 3rd to the 4th quadrant in the presence of nested variogram structures 
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(nv > 1).  Also, it should be noted that the LRFD Φ values obtained for multiple shaft founda-

tions correspond to prescribed probabilities of failure for the whole pier (as opposed to individual 

piles, separately). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-4.  Dimensionless quadrant chart for single shaft design by graphical iteration. 
 
 

Figure 7-4 illustrates the influence of each parameter involved on final Φ values.  An 

increase in CVq (larger variability in local strength) or β (lower probability of failure) leads to a 

reduction in Φ.  An increase in Qdes/m (e.g., weaker rock → decrease in m) requires larger shaft 

dimensions, causing a higher degree of spatial averaging, and thus variance reduction, which 

increases Φ.  The same is true for a decrease in av, as well as for a reduced D, which implies 

larger L to achieve the required resistance and, again, a larger degree of variance reduction (less 
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uncertainty in resistance; especially when spatial averaging in the horizontal direction is 

neglected).  The third quadrant shows how D/ah = 0, in fact, is the most conservative assumption 

for unknown ah, since it leads to a minimum value of Φ for all L/av.  Finally, it should be evident 

from Figure 7-4, there does not exist a specific Φ for a given site and rock strength (CVq).   

Chapter 3 discusses the way Figure 7-4 may be used to handle layers, the inclusion of end 

bearing, as well as, multiple shaft designs.  

The development of the variance reduction α1/2 given in Figure 7-3 for the estimate of 

CVR, assumed that sufficient data were available to completely define the covariance function 

(C(h)) in both the vertical and horizontal direction.  Chapter 4 addresses the issue of boring data 

at large lateral distances, as well as the possibility of having limited data.  Specifically, for large 

spacing it was shown that the solution for D/ah = 0 was conservative (solid line Figure 7-3), and 

the uncertainty associated with a few borings may be represented as Equation 4-1 which is 

shown as the dashed lines in Figure 4-1 as also displayed in Figure 7-5.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-5.  Modification of Figure 3-2 (Figure 7-3) to include number of borings. 
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Again, the dimensionless quadrant design chart given in Figure 7-4 (Figure 3-16) may be 

used with the third quadrant figure (bottom left) replaced with Figure 7-5.  Evident from Figure 

7-5, there is significant improvement between 3 and 20 borings at the site, but little improvement 

beyond that number.  An example investigating the influence of number of borings (e.g., 6) is 

given in Chapter 4. 

Finally, in the case of borings within the footprint of the pier/shafts (e.g., non redundant), 

which are still not close enough to one another to establish the horizontal correlation length (ah) 

but are still at a sufficient proximity to allow for some variance reduction between the boring and 

the wall of the shaft, was presented in Figure 5-1.  Interesting is the comparison of Figure 5-1 

and Figure 4-1, which is given in Figure 5-4 and shown here in Figure 7-6.  The reduction in the 

coefficient of variation in shaft resistance CVR (= α1/2 CVq) using borings within the footprint 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-6.  Comparison of CVq reduction for borings in zone αb
1/2 versus within 

footprint αc
1/2 of design shaft. 
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(αc
1/2) versus just within the zone (αb

1/2), is quite large.  Increasing randomly the number of 

borings (nb) does not have the same impact as increasing the number of borings within the 

footprints (nf).  Again, Figure 7-6 may readily replace the third quadrant chart in Figure 7-4 and 

be used for shaft design.  Chapter 5 concludes with a nice example demonstrating the process. 

7.3  Use of Both Load Test Data and Borehole Data  
to Estimate Shaft Resistance  

For the work presented in Chapters 3 through 5, it was assumed that the ratio between the 

measured shaft resistance (e.g., skin and tip) and the borehole’s estimate of resistance, i.e., bias 

(λR), was a known proportionality constant (e.g., AASHTO’s λR = 1.06).  However, since it is 

current practice to perform a few field load tests on a site (e.g., non redundant piles and shafts), it 

was decided to assess the variance of the design method σ2
ε (referred to as random residual) in 

conjunction with the borehole predicted resistance variance (σ2
B) to assess the expected design 

shaft resistance variance and associated CVR.  

The process involves obtaining borehole strength/modulus data within the footprint of the 

load tests (Figure 6-1) and performing a least square fit between the estimated shaft resistances 

from segments within the borehole (qBi) to the same segments obtained from the load test (qLi, 

Figure 6-2 shown herein as Figure 7-7).  The regression line was defined by the Equation 6-1 as 

ε++= BiLi bqaq  (7-5) 

where a and b are the intercept and slope of the regression line, respectively, and ε is a random 

residual of mean zero and minimized variance σ2
ε.  Variables a and b may be interpreted as 

parameters accounting for systematic prediction bias (e.g., consistent over- or under-estimation) 

and a larger degree of spatial averaging over the shaft intervals.  Variable ε, in turn, represents 
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the random prediction error which includes spatial variability between borehole and shaft 

surface as well as random measurements errors, irregularities in test shaft surface, etc.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-7.  Data points of measured versus predicted strengths with linear regression line 

(red) and linear regression parameters. 
 
 

Subsequently, Chapter 6 upscales the regression equation from intervals along the shaft to 

the whole shaft to arrive at the coefficient of variation of the complete shaft (i.e., Equation 6-9) 

as 

 (7-6) 

 

where m*B represents the predicted mean borehole strength over a depth L; σ*2
B is the prediction 

uncertainty about m*B; and α0 is the dark solid line found in Figures 7-3, 7-5, and 7-6.  As dis-

cussed in Chapter 6, the variance of the borehole prediction, i.e., σ*2
B depends on whether 

borehole data are available in the foundation footprint or not.  For instance, in the case of borings 

not in the footprint of the shaft, Figure 4-1 (shown as Figure 7-5) may be used to assess α1/2 
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when multiplied by the rock strength variance (σ2) gives σ*2
B.  In the case when borehole data 

are available in the footprint, σ*2
B = 0 as borehole strength used for prediction is directly 

observed.  The variance of the random residual (σ2
ε) is given by Equation 6-4, and is related to 

the variance of the load test resistances and the correlation coefficient (r) from the least square fit 

of the data.  Subsequently, the classic LRFD design equation Qdes = ΦRn was reformulated as 

Qdes = Φum*LAs (As being the lateral shaft surface area) with the bias correction now being 

contained in m*L and Φu defined as Φ from AASHTO’s FOSM equation with CVR from 

Equation 7-6 and λR = 1.  The design unit side friction is subsequently defined as fdes = Φum*L.  

Chapter 6 considers a real case (Jewfish Creek) which had two full-scale load tests and shows the 

improvements to the design resistance (Qdes) under different assumptions of borings locations.  

Finally, it should be noted that the combined use of load testing and boring data is quite an 

improvement over current AAHSTO practice of a fixed LRFD Φ based on a fixed number of 

load tests with rock coefficient of variation (CVq).   

7.4  Summary of Case Studies 

For all the design scenarios discussed, case studies were presented based on data collected 

at three different sites (17th Street, Fuller Warren and Jewfish Creek).  Table 7-1 contains a 

summary of respective results in terms of resistance factors Φ and design shaft lengths L.  

However, as pointed out earlier, Φ has limited practical meaning since it is not a constant. 

Specifically, it is a function of the shaft’s physical dimensions (length and diameter), as well as 

the geostatistical characteristics (CV and covariance, i.e., av, and ah) of the soil/rock, the applied 

loads, and the target reliability β (equal to 3 in all of this work) of the foundation.  This is 

illustrated, for example, by lines 7 and 8 in Table 7-1, where a 6% increase in Φ goes along with 

a 25% reduction in L, or even more so by lines 10 and 11 where a 5% increase in Φ is associated 
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with a 33% increase in L.  For a given shaft length L, however (diameter D = 4 ft everywhere in 

Table 7-1), lines 1 and 2 show that separation into subzones and detrending of non-stationary 

data leads to increased Φ and, hence, increased Qdes.  In the same way, lines 3 through 6 

demonstrate the non-conservative effects of including a nugget variance or of not including a 

random areal trend in the variogram (increasing Φ and Qdes), as well as the conservative effect of 

the line shaft approximation for unknown horizontal correlation lengths ah.  Lines 7, 9, and 10 

show how for a situation of equal Qdes and β, the shaft’s design length L increases from 20 ft to 

21 ft due to limited number of borings, and how L decreases to 15 ft (for equal mean strength m 

= 16.1 tsf), if data is available in the production shaft footprint.  Lines 12 through 15 illustrate 

how Φ and, hence Qdes, behave under the design scenario of Chapter 6, inclusion of load testing. 

Performing load tests at a site with collocated core sample borings to establish a site specific bias 

relationship generally increases Φ (Qdes) for given shaft dimensions versus no load testing and 

assuming conservative bias correction coefficients.  It is also seen that additional collection of 

core sample data in the footprint of production shafts may increase Φ (Qdes) substantially (here 

57% with load testing).  In the Jewfish Creek example, however, it turns out to be more 

favorable to not perform load testing and have data in the footprint of production shafts (Φ = 

0.68) than performing load tests and not have borings in the footprint of production shafts (Φ = 

0.47).  Even though the latter is a reasonable result, it depends on site specific parameters, as 

well as, choice of the worst case regression parameters.  Finally, note that it is not meaningful to 

directly compare Φ values of lines 1 through 11 to those of lines 12 through 15, since in the 

former case Φ contains the bias correction (resistance bias factor λR = 1.06 everywhere), while in 

the latter case bias correction (by the regression coefficients a and b) is not contained in Φ. 
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It is emphasized once more that Table 7-1 is a mere summary of design results from the 

case studies performed in this work and, as such, should not be used for drawing general 

conclusions about other sites or portions of sites not investigated here. 

 
Table 7-1.  Summary of Design Results for Case Studies Presented 

Site  Scenario 
Prescribed 
parameter 

Φ [‐]  L [ft]  Comments 
Line 
# 

0.80  Separate layers + detrended  1 Fuller 
Warren  0.55  All data w/o treatment  2 

0.74  No nugget + ah known  3 
0.80  40 % nugget + ah known  4 
0.69  No nugget + ah unknown  5 

L = 25 ft 

0.51 

25 

No nugget + ah unknown  
+ 20 % random areal trend 

6 

0.62  20  No end bearing  7 

Exhaustive 
data 

(Chapter 3) 

0.66  15  With end bearing  8 
Limited 
data 

(Chapter 4) 
0.60  21  Data from 6 borings  9 

0.78  15  m = 16.1 tsf  10 

17th 
Street 

Data in 
footprint 
(Chapter 5) 

Qdes = 2500 t 

0.82  20  m = 11.8 tsf  11 

0.47  With load test data at site  12 No data in 
footprint 
(Chapter 6)  0.32  No load test data at site  13 

0.74  With load test data at site  14 

Jewfish 
Creek  Data in 

footprint 
(Chapter 6) 

L = 30 ft 

0.68 

30 

No load test data at site  15 

 

7.5  Recommendations 

The work outlined in this report represents quite a departure from current practice, i.e., a 

fixed LRFD Φ.  However, the proposed design has been developed from sound geostatistical 

theory which accounts for spatial correlation, i.e., covariance function, as well as upscaling from 

a simple borehole to a full-size shaft or multiple pile/shaft layouts.  Unfortunately, even though 

the work investigated three sites (17th Street, Fuller Warren, and Jewfish Creek Bridges), it is 
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recommended that other sites be investigated, especially the inclusion of load testing and the 

evaluation of the random residual variance σ2
ε.  In addition, since geostatistics is relatively 

unknown to practicing geotechnical engineers, it is proposed that the FDOT develop a short 

course or set of tutorials on the topic (e.g., Chapter 2, scatterplots, variograms, covariance, etc.). 
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APPENDIX A 
LOCAL STRENGTH DATA 

 
 
A.1  17th Street Bridge 

x, y are horizontal coordinates and z is elevation from bottom (in ft) 
q = 1/2 x (quqt)1/2 x recovery (in tsf) 
 

Boring 1  Boring 2  Boring 3 
x y z q  x y z q  x y z q 
9 24 40 11.95  9 7 40 18.7  9 0 40 14.2 
9 24 39 16.15  9 7 39 30.8  9 0 39 17.45
9 24 38 9.95  9 7 38 9.75  9 0 38 25.95
9 24 37 7.6  9 7 37 17.7  9 0 37.5 13.05
9 24 36 25.05  9 7 36 10.4  9 0 37 16.45
9 24 35.5 20  9 7 35 31.7  9 0 36 9.3 
9 24 35 9.25  9 7 34.5 8.58  9 0 35.5 20.9 
9 24 34 7.7  9 7 31 10.64  9 0 34 11.38
9 24 33 13.01  9 7 30 13.62  9 0 32 7.96 
9 24 32 10.98  9 7 27 26.8  9 0 31.5 19.44
9 24 31 14.49  9 7 26 14.05  9 0 30.5 11.7 
9 24 30 16.7  9 7 25 21.52  9 0 30 12.2 
9 24 27 16.36  9 7 24 7.88  9 0 29.5 17.68
9 24 26 6.72  9 7 23 5.1  9 0 29 12.32
9 24 25 12.63  9 7 20 4.11  9 0 28 6.44 
9 24 24 7.79  9 7 19 17.36  9 0 27 7.56 
9 24 23 6.96  9 7 18 14  9 0 26 7.28 
9 24 22 4.96  9 7 17 14.08  9 0 25 5.52 
9 24 20 6.05  9 7 16 14.92  9 0 23 4.66 
     9 7 15.5 18.64  9 0 22 3.88 
     9 7 15 19.16  9 0 21 4.39 
     9 7 14 19.87  9 0 20 13.09
     9 7 12 23.83  9 0 19 24.6 
     9 7 7 15  9 0 17 10.36
          9 0 15 9 
          9 0 14 11.74
          9 0 10 10.63
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Boring 4  Boring 5  Boring 6 

x y z q  x y z q  x y z q 
0 19 40 27.63  0 10.5 40 13.52  18 10.5 40 17.91
0 19 38 3.95  0 10.5 39 14.95  18 10.5 35.5 10.17
0 19 37 14.2  0 10.5 38 21.36  18 10.5 34 24.18
0 19 35 9.52  0 10.5 37 20.97  18 10.5 33 42.73
0 19 34 12.93  0 10.5 36.5 44.54  18 10.5 32 38.6 
0 19 32 15.16  0 10.5 35 26.71  18 10.5 31 21.81
0 19 31 11.74  0 10.5 33 16.93  18 10.5 30 23.11
0 19 30 4.64  0 10.5 31 15.16  18 10.5 29 7.62 
0 19 29 6.21  0 10.5 30 20.49  18 10.5 28 8.84 
0 19 28 16.79  0 10.5 29.5 34.45  18 10.5 27 6.17 
0 19 27 30.35  0 10.5 28.5 35.32  18 10.5 25 7.27 
0 19 26 34.17  0 10.5 27 18.18  18 10.5 20 16.23
0 19 25 26.1  0 10.5 25 17.27  18 10.5 19 30.38
0 19 24 18.1  0 10.5 24.5 19.21  18 10.5 18 31.83
0 19 23 11.75  0 10.5 23.5 9.28  18 10.5 17 16.97
0 19 22 4.89  0 10.5 23 12.55  18 10.5 15 27.18
0 19 20 17.67  0 10.5 22 3.74  18 10.5 14 31.05
0 19 19 22.92  0 10.5 20 4.62  18 10.5 12 24.59
0 19 16 21.5  0 10.5 19 22.76  18 10.5 11 19.97
0 19 15 22.08  0 10.5 17 26.04  18 10.5 9 16 
0 19 5 14.72  0 10.5 16 29.84  18 10.5 5 12.64
     0 10.5 12 19.04  18 10.5 0 4.82 
     0 10.5 10 18.33      
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A.2  Fuller Warren Bridge 

x, y are horizontal coordinates and z is elevation from bottom (in ft) 
q = 1/2 x (quqt)1/2 x recovery (in tsf) 
 

Boring 1  Boring 2  Boring 3 
x y z q  x y z q  x y z q 
35 0 26 7.3  35 40 26 6.5  0 40 26 4.1 
35 0 24 4.8  35 40 25 8.9  0 40 25 1.0 
35 0 21 16.9  35 40 21 4.8  0 40 24 1.2 
35 0 20 9.7  35 40 20 10.0  0 40 20 11.7 
35 0 19 13.5  35 40 19 11.6  0 40 19 8.0 
35 0 18 16.6  35 40 18 13.8  0 40 18 6.1 
35 0 17 21.6  35 40 17 5.0  0 40 17 12.8 
35 0 11 1.9  35 40 15 1.5  0 40 16 1.8 
35 0 10 2.1  35 40 14 2.5  0 40 15.5 3.6 
35 0 9 3.5  35 40 13 1.6  0 40 15 4.2 
35 0 8 2.1  35 40 11 2.5  0 40 14 2.0 
35 0 6 1.2  35 40 10 3.2  0 40 13 1.5 
35 0 5 1.0  35 40 9 2.7  0 40 12 2.7 
35 0 4 0.4  35 40 7 1.3  0 40 11 2.6 
35 0 3 0.8  35 40 6 1.5  0 40 10.5 2.4 
35 0 1 0.3  35 40 5 1.9  0 40 10 2.6 
     35 40 4 1.8  0 40 5 1.4 
     35 40 3 0.9  0 40 4 1.5 
     35 40 2 0.6  0 40 3 1.4 
     35 40 1 0.7  0 40 2 1.2 
          0 40 1 0.7 
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APPENDIX B 
DERIVATION OF VARIANCE REDUCTION FACTOR  

FOR D/ah = 0 (LINE SHAFT) 
 
 

In the appendix of Elkateb et al. (2003), a variance reduction factor ΓT
2 (here α) is derived 

for a spherical correlation structure of range a and for averaging over a length T.  By increasing 

T beyond a, their ΓT
2 in equation A4 grows towards infinity, which is contrary to the requirement 

that ΓT
2 approaches zero for averaging over an infinite multiple of correlation ranges.  The 

variance reduction factor in Elkateb et al. (2003) is found to be correct only for the range  0 ≤ T 

≤ a, which is due to an error in their Equation A2 for the correlation function. Deriving the 

variance reduction factor based on Elkateb et al. (2003) with the correct Equation 3.6 from here 

and using α for ΓT
2, L for T and av for a as in the present context leads to 
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For  0 ≤ L ≤ av  this gives 
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and 
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as in Elkateb et al. (2003).  However, for  L > av  the integral in Equation B-1 needs to be split 

into one from 0 to av and another one from av to L according to Equation 3-6.  The integrant of 

the latter is zero leading to 
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and 

1for        
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Equations B-3 and B-5 can be seen to agree with the numerically obtained results for D/ah = 0 

(averaging over a vertical line of length L) in Figure 3-2(a). 

 
---------------------------------------------------------- 
 
DERIVATION OF EQUATION 6-8 

By subtracting Equation 6-7 from Equation 6-6, an equation for the prediction error ΔqL is 

obtained as 

εα 0* +Δ=−=Δ BLLL qbmqq  (B-6) 

where ΔqB = qB – m*B is used as a random residual about the predictor.  Squaring Equation B-6 

gives 

εαεα BBL qbqbq Δ++Δ=Δ 0
2

0
222 2  (B-7) 

Taking the expectation of the squared residual Δq2
L is known to give the variance about m*L as 

2
0

22
0

2
0

2222 *][2][][][* εσασεαεασ +=Δ++Δ=Δ= BBBLL bqEbEqEbqE  (B-8) 

which is identical to Equation 6-8.  E[ ] hereby denotes the expectation (i.e., ensemble mean) 

operator knowing that E[Δq2
B] = σ*2

B (variance of random residual about predictor), E[ε2] = σ2
ε 

(variance of random residual about regression line) and E[ΔqBε] = Cov[ΔqB,ε] = 0 (covariance 

between predictor and regression residuals), where the latter is based on the standard assumption 

of independence between predictor and regression residuals. 
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APPENDIX C 
LOCAL STRENGTH DATA FROM JEWFISH CREEK (PIERS 1 – 38) 

 
 
z is depth (in ft); horizontal coordinates not available 
q = 1/2 x (quqt)1/2 (in ksf) 
 

Pier z q  Pier z q  Pier z q 
2 -15.7 11.3  10 -16.6 11.9  18 -7.2 21.2 
3 -35.8 17.4  10 -11.6 14.3  19 -31.8 10.1 
3 -26.5 22.7  10 -7.1 7.4  19 -26.8 11.5 
3 -11.8 15.6  12 -31.7 13.3  19 -21.8 18.4 
4 -24.8 19.7  12 -26.7 22.0  19 -16.8 10.7 
4 -19.8 12.5  12 -21.7 10.5  19 -11.8 16.9 
4 -14.8 19.4  12 -16.7 10.0  19 -7.3 13.4 
4 -10.8 17.9  12 -11.7 17.8  20 -9.5 11.1 
5 -31.6 17.4  12 -6.7 14.2  21 -28.2 17.1 
5 -11.6 19.3  13 -41.6 12.9  21 -8.7 12.9 
5 -7.1 14.4  13 -36.6 17.9  22 -29.7 10.7 
6 -26.9 13.8  13 -31.6 6.9  22 -10.2 17.4 
6 -21.9 15.0  13 -26.6 13.6  23 -27.2 16.3 
6 -16.9 9.4  13 -16.6 6.6  23 -15.2 25.3 
6 -11.9 26.7  13 -11.6 14.1  24 -55.7 8.8 
6 -8.1 20.0  13 -7.1 10.0  24 -10.7 27.2 
7 -26.9 26.0  14 -26.6 11.6  25 -30.5 31.7 
7 -21.9 11.3  14 -16.6 14.2  25 -11.0 23.2 
7 -11.9 13.6  14 -11.6 15.4  26 -10.0 11.3 
7 -7.4 15.7  14 -7.1 14.1  28 -30.6 24.1 
8 -42.1 10.4  15 -61.9 25.0  28 -11.1 18.5 
8 -37.1 12.1  15 -56.9 17.7  29 -31.1 20.3 
8 -32.1 14.6  15 -31.9 30.0  29 -11.6 30.6 
8 -27.1 14.7  15 -21.9 8.4  30 -11.8 24.8 
8 -12.1 14.1  16 -27.4 16.6  31 -31.4 14.7 
8 -7.6 15.6  16 -22.4 26.0  31 -18.4 25.7 
9 -41.8 10.7  16 -17.4 23.5  32 -37.3 23.5 
9 -36.8 24.2  16 -12.4 35.8  32 -11.8 19.9 
9 -26.8 27.4  16 -7.9 27.1  33 -51.1 13.2 
9 -21.8 8.7  17 -41.7 20.9  33 -25.1 36.8 
9 -16.8 7.8  17 -26.7 11.0  33 -12.6 14.5 
9 -11.8 23.1  17 -21.7 21.0  34 -26.8 52.1 
9 -6.8 21.4  17 -16.7 27.2  34 -13.8 14.0 
10 -36.6 11.5  17 -11.7 13.1  35 -31.2 68.0 
10 -31.6 11.1  18 -26.7 14.5  35 -11.7 12.1 
10 -26.6 19.4  18 -16.7 10.0  36 -16.8 15.0 
10 -21.6 7.7  18 -11.7 14.6  38 -21.8 63.7 

 


